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Preface

Cancer is the most enigmatic health disorder humanity ever experienced. The last
decade witnessed rethinking and reunderstanding of cancer. Cancer is not an evil
creature. It is just a creature who wants to live, as all other living beings do. The book
brings together biomedical scientists, biophysicists, mathematicians and computer
scientists. They share their unorthodox views on origins, progress and treatment of
cancer. J. James Frost opens the book with his chapter uncovering two key proper-
ties of cancer: symmetry-breaking and computational intelligence. Then Przemyslaw
Waliszewski discusses cancer in the light of complementarity, complexity and fractal
dynamics.A chapter fromThomasE.Yankeelov’s laboratory analysis of howmedical
imaging technologies can be used to obtain patient-specific parameters for mathe-
matical models of cancer is given. The effects of over-feeding in computational
models of tumour growth are discussed by Pan Pantziarka and colleagues. Conway’s
Game of Life cellular automata are modified with global coupling in the chapter by
Vladimir García-Morales and colleagues to model tumour growth. Oscar J. Suarez
and colleagues discuss the potential of controlling genetic regulatory networks to tune
cellular response to cancer. Milos Savic and colleagues present implementations
of heterogeneous tumour modelling with PhyssiCell software and the implication
of the heterogeneity in precision medicine. Sensitivity analysis of the cancer stem
cells dynamical simulation is studied by Branislava Lalic and Igor Balaz. Marina
Kovacevic presents her pioneer results on the molecular multiscale simulation of
nanocarriers for cancer treatment. Michail-Antisthenis Tsompanas and colleagues
present a haploid-diploid evolutionary algorithm for the Optimization of nanopar-
ticles for cancer treatment. Perspectives of nanomedicine for cancer treatment are
overviewed by Petra Gener and colleagues. A chapter from the Sabine Hauer’s group
outlines the future of cancermedicine based on swarms of nanorobots. The book ends
with a chapter on modelling of angiogenesis with differential equations and cellular
automata authored by Ioannis Karafyllidis and colleagues. Benedetta Casadei with
co-authors overview strategies and mathematical models to study the complexity of
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vi Preface

drug resistance in cancer. Hector Zenil and colleagues discuss how to use computa-
tional analysis to unravel the complexity of the immune system. The book is mostly
self-contained and well-illustrated, and chapters are written in a lively style. The
book is accessible to readers from all walks of life and level of education, from
laymen and high school students to experienced researchers.

Novi Sad, Serbia
Bristol, UK
March 2022

Igor Balaz
Andrew Adamatzky
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What Cancer Is

J. James Frost

…it seems to me that I must consider as contained in the
individual concept of myself only that which is such that I should
not longer be me if it were not in me: and that all that is to the
contrary such that it could be or not be in me without my ceasing
to be me, cannot be considered in my individual concept.
Letter from Antoine Arnauld to Gottfried Leibniz [1].

Abstract The problem of cancer is examined from the metaphysical standpoint
of essence and ground. An essentialist definition of cancer is assumed that would
be valid in all possible worlds in which cancer could logically exist. The grounds
of cancer are then examined and elucidated. Two grounding cancer properties are
identified and discussed: symmetry-breaking and computational intelligence. Each
examination leads to concrete conclusions for novel therapeutic approaches and a
more fundamental understanding of what cancer is at bottom. Other possible cancer
grounding properties related to evolution, adaptability and stochastic features are
identified for future work. This approach is novel and offers new solutions to the
problem of cancer.

Keywords Cancer · Intelligence · Symmetry-breaking · Computation · Ground

1 Introduction

Identifying a solution to the unsolved problem of cancer is currently based on a
program of scientific reductionism, in which each new solution attempt provides
temporary patient benefit until the oncologist and the field of oncology itself reaches
the end of yet another box canyon.1 In 1990 5.7 million people died from cancer
worldwide; in 2017 the number of deaths increased to 9.6 million. Each new

1 A canyon with vertical walls and closed upstream with a similar vertical wall, that is, a dead end.
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2 J. J. Frost

approach, from deep DNA sequencing, to exquisitely-designed molecular targeting,
to the intricacies of epigenetics follows a well-worn path of near certain scientific
justification and overwhelming enthusiasm to modest gains in some cancers in select
patient populations—all at a worldwide cancer research expenditure of $100 billion
in 2019.

This chapter examines an alternative to the regime of scientific reductionism. It is
concerned with an essentialist definition of cancer and what then grounds cancer ‘at
bottom’. The approach strives to strip cancer to its bare bones, and then to examine
the necessary properties cancer requires to manifest the characteristics observed
everyday in cancer patients. It then leads to a consideration of concrete inferences
that, in turn, result in greater insight into cancer and therapeutic strategies that have
not previously been considered. Two aspects of this analysis are cancer symmetry
breaking and computational intelligence. Each can be derived from a fundamentality
approach presented here and can be considered as two of cancer’s grounds. Each
additionally leads to material conclusions for novel solutions to the cancer problem.

2 Cancer’s Essence and Ground

Essence is what it is for an object to be the very thing that it is. It is the fundamental
definition of an object—its definition at bottom. Essence is a metaphysical concept
of what it is to be that thing in all possible worlds that are logically realizable [2–4].
Essence is thus a necessary feature of an object [5–8]. It is a property an object
could not lack and still be that object. An essence definition should be independent
of the conceptual apparatus that observers bring to bear on it [9]. It may be singular
(monadic) or plural [10, 11].

To be human is the essence of Socrates and that would be true in all possible
worlds in which Socrates could exist. A possible world is an instantiation of reality
in which the world’s accidental or contingent properties are different than in our
actual world [9], for example, a world in which I myself, giraffes, Harvard, the US
Constitution, Samuel Clemens, oak trees, and Chevrolets don’t exist. In their place
are other objects, concepts, and relationships. For cancer, a possible world is one in
which biochemistry, some physical laws, and organizational properties are different
than in our actual world. For example, a world in which life is based on RNA or some
other coded information, where transforming growth factor, tumour angiogenesis,
or any of the cancer hallmarks [12] don’t exist. A statement of essence will not
include the properties of the object itself to avoid problems of self-reference and
circularity [13, 14]. Essence statements may extend from coarse to fine-grained [15,
16]—fine-grained essence statements are most relevant to scientific explanations of
natural phenomena.

What might be an essence statement for cancer that would be necessary in all
possible worlds in which cancer could logically exist? Logically, existence means
that properties cannot violate first order logical principles, such has having and
simultaneously not having a certain property, or violating implication principles. We
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can try on the following essence statement and see if it works as we move forward:
Cancer expands physically and biochemically to overcome and destroy its host and,
thereby, the cancer itself . One could construct other essence statements in this spirit.
That is, statements that do not reference the actual properties of cancer, thus avoiding
circularity. Conversely, the statement could encompass other processes, like man’s
destruction of the environment as “a cancer on the planet” [17–19]. The cancer
essence statement incorporates none of the traditional cancer hallmarks [12, 20],
which can be viewed as accidental features of cancer in our world. Certainly, we
have to deal with the cancer we know, including its mutable properties. But here,
examination of matters of fundamentality is the goal. Again, the actual properties of
cancer in our world are not features of the essence statement above. Can we learn
something new about cancer by considering its essence?

Each term in this essence statement has meaning. Expansion encompasses phys-
ical extent and scope. The biochemical expansion of cancer and subversion of normal
homeostatic physiology and biochemistry is a key aspect of cancer. It is as much
responsible for cancer’s deadly features as is physical expansion in space. Metas-
tasis is omitted since cancer can expand in possible metaphysical scenarios without
metastasizing, e.g., by the expansion of a solitary mass, as is the case in some malig-
nant cancers. Cancer must have a host with a preexisting structure, mode of energy
production, and biochemical machinery that can be co-opted for the cancer’s new
purpose.2 Cancer is a progressive process that first overcomes the host’s normal
biochemistry by overthrowing and subverting it for a new functional purpose. It
eventually destroys the host and thereby the cancer itself—how it accomplishes this
is left out of the essence statement. The nature and period of time of the subversion
and destruction process is variable, frommonths to years. Indeed, a current treatment
approach is to lengthen this period in order to prolong the life of the host—the patient
[21–23]. Space, energy, and information are key background features of this essence
statement that require examination.

Leaving essence for now, the concept of “ground” is examined. There are a number
of meanings of ground in the philosophical literature, but a useful one for scientific
purposes in describing natural phenomena is: ground is a relationship between facts
[15, 24–27]. A fact is grounded by grounds or ground claims. For example, that
this drink is a cocktail is grounded by the drink being alcoholic and mixed [15].
Other examples include a physicalist asserting that nonphysical facts are grounded
by physical processes; natural laws are grounded in patterns of local, qualitative
matters of fact; and a person in pain is grounded in the firing of c-fibers [14, 15].
Thus, ground has explanatory and deterministic features that create a hierarchy of
stratified facts of reality. Ground provides an explanatory or “because of” charac-
terization of facts, creating a level structure that ends with a foundational fact in
the explanatory chain. In this construct there may be ungrounded facts at bottom
that are primitive or pre-rational [28]. Ground is typically a many-to-one relation-
ship, in that many properties can jointly ground an item [29, 30]. Grounds portray

2 Viral and other external (e.g., radiation) modifications of the host’s molecular machinery that lead
to cancer are a subcategory.
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an antecedent-consequent relationship, in that the antecedent grounds the grounded
consequent.

Grounding canbedifferentiated fromcausality on two fronts.Causality is typically
diachronic whereas grounding is synchronic [31]. Second, causality is a relationship
between events whereas ground is a relationship between facts [25, 31–33]. This
distinction will deserve further examination for cancer. A ground may be full or
partial. For example, being amixed drink and being alcoholic are both partial grounds
for being a cocktail. Partial grounds will be important for cancer. Ground obeys
transitivity: if A grounds B and B grounds C, then A grounds C. The hierarchy of
grounding relationships in cancer will be important to examine, as discussed below.

Ground and essence are related: when a connection of grounded facts exists, the
truth of the grounded connection will be based in the essence of the constituents of
the grounded fact [24, 25, 27, 34, 35]). In fact, the relationship of ground to essence,
causality, and necessity is a current area of active investigation. Some argue that
ground reduces to essence, and others the converse [36–39]—avoiding circularity
is key here. Essence statements can be divided into objectual, generic and factual
categories [11, 38–40]. Essence statements as definitions are equivalence or identity
statements, such as: water is H2O. Full essence statements are symmetric and imply
necessity. The proposed essence statement for cancer above is viewed as generic
essence since it refers to a process or concept, rather than a pure object, such as
Socrates. Whether it is full or partial is explored subsequently.

Ground, in contrast to essence, reflects an asymmetric, irreflexive relationship
between the grounded and the grounds [29, 41, 42]. In scientific analysis, in partic-
ular, ground offers an explanation between the explanandum and the explanans, the
phenomenon to be explained and the sentences offered to explain that phenomenon
[35, 38]. Ground is a “because of” or “makes it the case” type of statement. Ground
is a constitutive relationship between one or more grounds for the grounded object or
phenomenon that results in a sufficiency relationship. In the essence or definitional
framework, the relationship is of necessity and is reflexive [36, 43, 44]. That a ball
is red and round is grounded by the fact that it is red and that it is round, but not
the converse direction. Another example: the laws of nature are grounded in patterns
of local, qualitative matters of fact. A grounded fact is less fundamental than the
fact that grounds it. Ground is a type of deterministic relationship, the strongest
form of metaphysical explanation [44–46]. Hence, determination implies metaphys-
ical sufficiency for what is grounded, and metaphysical sufficiency then suffices
for necessitation [14]. For cancer, both necessary and contingent grounds exist, the
former providing the explanatory role in all possible worlds and the contingent in
this.3

Of the many varieties of grounding, “grounding explanation” is most useful for
natural phenomena and scientific accounts and laws [35, 45]. An explanation has a
fact that is explained, the explanandum, and the explanans fact. As addressed above,

3 Cancer has indeterministic properties as well, for example, random mutations related to its origin
and evolution, and the stochastic binding of transcription factors to their genomic sites. The overlap
and interplay of deterministic grounds and non-deterministic features await further research.
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the expanandum-explanans is a “because of” relation: the fact that the window shat-
tered, the explanandum, and Suzy threw a rock at it, the explanans. This grounding
explanation is synchronic, whereas the equivalent causal explanation is diachronic.
Grounding explanations are irreflexive, asymmetric and transitive [41, 42, 47]. To
clarify the overlap with causation, one considers constitutive grounding explana-
tions. These are a hierarchy of chaining facts that constitute an object: there is a
table here in virtue of there being wood arranged here in a certain ‘table-like way.
Lest this become too abstract for the present purposes, one can posit the question of
whether cancer is explained by the arrangement of genes, proteins, signaling recep-
tors, histones, etc. in a ‘cancer-like way’. Is there something beneath the facts of
cancer that provides a grounding explanation for cancer?

An important grounding category, particularly for scientific explanation, is that of
essentialist grounding mechanisms, which link back to the essences of the objects in
a hierarchical chain [32, 33, 35, 48] In this view, object essences require certain deter-
mination relations to exist. A grounding mechanism explanation then delineates how
the connections run between the grounding facts and the fact they ground [49]. This
can be a fine or coarse-grained description that encompasses quantum mechanics,
covalent and ionic bonds, molecules, DNA, and transcription to a functioning gene.
Different levels of explanation and their corresponding scientific disciplines will
bottom out at different levels; molecular biologists will bottom far before quantum
mechanics, for example. Here we address where cancer explanations may bottom
out in the domain of necessary facts that would be true in all possible worlds.

In the case of cancer we will examine the relation of the essential definition
of cancer, above, to its grounding mechanisms. This view overlaps with law-like
natural phenomena and, indeed, the concept of a law itself [46]. Are there any laws
of cancer that can be discovered? The Cancer Hallmarks were an early attempt at
describing the recurring features or properties of cancer that might give rise to law-
like explanations. The Hallmarks are, however, the “accidental” features of cancer
[50]. They are, accordingly, not necessary and cannot be the basis of “cancer laws”.
Here, we seek laws that are not based on nor incorporate the contingent cancer facts,
but rather ground these facts. The detailed relationships among grounds, laws, events,
and causality is a complex area of active research [46, 49, 51, 52], but is beyond the
scope of this work.

3 Cancer Hallmarks as Contingent Properties

The Hallmarks of Cancer was a seminal advance in the conceptual view of cancer
[12]. The hallmarks delineate the common features or traits of cancers across organ
origin and pathology. The initial list of hallmarks includes: self-sufficiency in growth
signals; evasion of apoptosis; insensitivity to anti-growth signals; sustained angio-
genesis; tissue invasion and metastasis; and limitless replicative potential [12].
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In an updated account, two hallmarks were added: deregulating of cellular ener-
getics, and avoiding immune destruction [20]. Two additional enabling character-
istics are: tumour-promoting inflammation, and genome instability and mutation.
While the hallmarks provided needed insight into common cancer traits and have
been applied to new therapeutic developments, the problem of cancer has remained
largely unsolved.

The centrality of the hallmarks has been questioned on several accounts. One
category is the emphasis on proliferation and motility in the context of a similar
importance in development and in benign tumours. Several analyses have pointed
out the overlap in feature of benign and malignant tumours [53–57]. Endometriosis
is example of an abnormal cell migratory process that is not cancer. Another category
of critique is the reliance on the reductive regime of somatic mutation theory (SMT)
[57–60]. This approach has recently given rise to the non-deterministic “bad luck”
theory of cancer neogenesis based on copying mistakes proportional to the normal
cellular replication rate [61, 62]. Further, the hallmark traits shift in their hierarchical
importance at different times in a cancer’s evolution and during treatment [20, 56].
SMT can be contrasted with the multilevel-based tissue organization field theory
[54, 63]. This viewpoint avoids a purely reductionist theory and examines cancer as
a multilevel process that features upward and downward causation.

The Hallmarks may also be questioned as grounds of cancer that would be neces-
sary in all possible worlds in which cancer exists—clearly they are not. In other
worlds, other Hallmarks would exist, some possibly overlapping with those in this
world, some eliminated, and new ones added. The central question is: what grounds
the Hallmarks at all in any possible world, including this one?

4 Cancer’s Broken Symmetry

Symmetry pervades the world, from nature to human art and construction to the
fundamental particles of physics [64, 65]. It is, however, uncommonly a perfect
symmetry, like a sphere, but most often an imperfect or broken symmetry [66–
68]. Broken symmetries appear and resolve continuously over time, for example, as
water freezes and thaws again to its more symmetric liquid state. Perfect symmetry
achieves little in nature nor in art or human construction. Only with a judicious level
of broken symmetry does functional structure arise. Conversely, states of maximal or
fully broken symmetry are chaotic and generate nothing. Symmetry and symmetry
breaking is a foundational property of the universe and is grounded at bottom in space
and logic itself. This can be most directly seen in the Noether theorems that demon-
strate an underlying symmetry in the key conservation laws of physics, including
the conservation of energy and angular momentum [69, 70]. Cancer is an interesting
example: its sine qua non is broken symmetry from the cancer cell to the chromatin
itself. A useful consequence of this fact is that all cancer is diagnosed and graded
based on the degree of cellular disorganization.
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The categories of cancer’s broken symmetry have been examined in a previous
work [71]. Three essential questions are addressed: what features or mechanisms
ground the observed macroscopic broken cellular symmetries; what classes of
broken symmetry exist in cancer cells; and how can improved knowledge of broken
symmetry in cancer be used to advance patient treatment. The three categories of
broken cancer symmetry are: combinatorial; geometric; and functional symmetry
breaking [71]. One example of combinatorial symmetry breaking is the broken
symmetry of the epithelial-mesenchymal hybrid cell state to the pure epithelial
or mesenchymal type. Since it is the mesenchymal cell type that metastasizes,
this broken symmetry is a key determinant in cancer progression. The molec-
ular constituents underlying this symmetry change include ZEB, SLUG, TWIST,
miR-200, miR-34, and many others [72–75].

The most widely-recognized feature of broken symmetry in cancer is that of the
cell shape. Shape progresses from uniformity within different organs and functional
cell types to an increasingly disorganized structure that correlates with malignant
potential and patient prognosis. What grounds this broken symmetry? The internal
cellular matrix, consisting of microtubular structural filaments, largely determines
the cell shape [76–78]. These microtubules comprise a tensegrity-based supporting
structure that has its own internal symmetries. Microtubules are also thought to
transmit information from the environment to the internal cell structures [78–80].
Recent investigations have even shown that microtubule and actin networks can
compute [81–83]. An outstanding question for future research is the degree to which
broken symmetry in microtubule networks grounds intrinsic cellular computation, a
topic addressed in the next section. Does cell asymmetry and coincident intracellular
actin filament asymmetry confer a computational advantage for cancer cells?

In the category of functional symmetry breaking, the symmetry of gene, protein
and other cellular networks is key. All networks can be classified according to the
symmetry features of the connected network components [84–87]. Graph theory
grounds the network symmetries and is a powerful tool for investigating cellular
networks [88–91]. The automorphismgroup,Aut(G), is a key parameter [92–95]. The
Komogorov complexity,K(G), is another that is inversely related toAut(G) and corre-
lated positively with information processing capacity [96–100]. Function networks
must be stabilizable and controllable to store and process information required for
survival of the cell or organism [101–104]. They must be resistant to disruption
due to a loss of functionality at one or more points in the network [71]. Network
homeostasis is closely related to network symmetry. Conversely, network vulnera-
bility is directly related to focal network asymmetries. The vulnerability of electric
power grids, for example, is related to the number of hubs where multiple connec-
tions are concentrated. The broken subgroup symmetries in cancer cell networks are
related to the level of attack tolerance at the sites of reduced symmetry in cancer
networks [105–111]. Identifying subgroup cancer network broken symmetries is a
viable strategy to direct targeted therapeutics to these sites [84, 89, 90]. This is one
of the many concrete examples of knowledge of symmetry breaking in cancer poten-
tially leading to improved therapeutic strategies, and perhaps more importantly, the
development of new, targeted drugs for these sites. In parallel, could this knowledge
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be used to repair cancer networks to reestablish homeostasis? Other directions for
cancer symmetry-breaking research are listed elsewhere [71].

Symmetry and symmetry breaking are thus one possible ground for the essence
of cancer statement above. Since symmetry exists in all possible worlds in which
hosts and cancer can logically exist, it would satisfy necessity. It is, however, only a
partial cancer ground, so satisfaction of the sufficiency criterion remains a question.
The next section examines computational intelligence and information transfer in
cancer. A question of where symmetry and symmetry breaking lie in the explanatory
hierarchy with computation and information emerges: a question of fundamentality.

5 Cancer’s Intelligence

Intelligent oncologists wage a valiant battle against cancer every day. They never-
theless have limited success in curing cancer or even arresting its progression in the
majority of cases: there are still some 10 million cancer deaths per year worldwide.
Cancer computes inventive solutions to the oncologist’s various strategies, and even-
tually wins the game in themajority of cases. It is indeed a gameplay: the intelligence
of the oncologist vs. the intelligent cancer, as has been described in a recent article
[112]. This view is grounded in the definition of intelligence and what can be intel-
ligent. The definition of intelligence for these purposes reduces to computational
intelligence and excludes conscious awareness. It is most immediately concerned
with the ability to learn, problem solve and adapt. Deception, bluffing, and prior
computation of actions for an array of possible future events are additional features
of intelligence.

Daniel Dennett has examined intelligence in terms of biological competency. He
describes four levels: Darwinian, Skinnerian, Popperian and Gregorian, in order of
increasing competency [113]. Each level can be linked to features of cancer, thus
viewing cancer as possessing many properties of intelligence [112]. For example,
does cancer learn from its earliest encounters with host defenses, store this informa-
tion in memory, preemptively compute solutions to future chemotherapeutic actions
by the oncologist, and at the right time implement these defense measures? Or, does
cancer generate real-time intelligent strategies as new survival problems arise? The
strategic balance of memory and active computation is a feature of intelligence; both
are limited as a function of the computing architecture and the supply of energy.
Cancer’s Intelligence examines these and related questions [112].

What can be intelligent is broad and extends from animals to bacterial swarms
[113–120] (ref from paper 9,10). In short, anything that can compute can be intel-
ligent. It is well known that pebbles, knots on a string, a slide rule, and silicon-
based computers themselves can compute. Chemical matter can compute, as well,
including the Belousov-Zhabotinsky reaction, liquid crystals, carbon nanotubes and
conductive foams [121–123]. Biologic matter also performs computations, including
with gene networks, DNA, actin filaments and microtubules, and the famous slime
mold [124–128]. In fact, biological matter can solve some of the most challenging
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computational problems in existence, such as the traveling salesman problem [129].
Biological computation in organisms can be classified as intrinsic computation, that
is, self-computation, as opposed to external computation by the desktop computer
in front of us [130–132]. Cancer, with its varied cellular composition and extended
networks, eventually computes its spread throughout the body. A co-opted microen-
vironment and relentless evolutionary adaption presents a formidable computational
adversary for the most intelligent oncologists.

The intrinsic computation of cancer can be described by its ε-machine [133–136].
The ε-machine is an inferential model of the cell’s or multi-cell system’s capturing
and processing of information “that permits the system to read the environment’s
information and rate of change; store and process that information; create an internal
efficient model representation of the environment; and use the model for future deci-
sions and actions”. As a function of evolutionary change, the caner ε-machine can
be updated to a new computational architecture in order to better outplay the oncol-
ogist’s strategies, or to develop improved resistance, such as by adopting a quiescent
state. Energy, space, and other resources limit this adaptive process. Although ε-
machine theory has been applied to many computational systems, it has not yet
been developed for cancer. Further discussion of the ε-machine, the role of Shannon
entropy-complexity descriptions, and the outlook for its application to cancer are
covered elsewhere [112]. Boolean network theory provides a tractable approach to
defining the cancer ε-machine(s) [137–143].

Once the caner ε-machine structure has been elucidated, the question then
becomes: how can it be out-computed by the oncologist? In the concept of gameplay
between the two adversaries, one can consider the most advanced types of human
gameplay, including chess, go and poker. How can new artificial intelligence (AI)
algorithms for human gameplay be applied to the cancer problem? One of the most
exciting recent AI developments in human gameplay has been for limit and no-limit
Texas hold’em poker [144–147]. Two-player poker is a vastly more complex game
that chess or go, with a state space of 10160. The new poker AI algorithms use coun-
terfactual regret minimization and other techniques to make the problem solution
tractable—it can now beat the best professional poker players [145, 146]. The algo-
rithms also incorporate the bluffing plays that are central to poker and mimic the
deception observed throughout nature [112, 147]. In the early development stages of
game theory with imperfect information, von Neumann recognized the importance
of deception in nature: “Real life consists of bluffing, of little tactics of deception,
of asking yourself what is the other man going to think I mean to do. And that is
what games are about in my theory.” Further: “An organism that has no poker face,
that communicates its state directly to all hearers, is a sitting duck, and will soon be
extinct” [148]. Cancer’s Intelligence explores the question of whether cancer bluffs
and how the new poker AI algorithms can be used as future AI tools for the oncologist
[112].

Limit Texas hold’em is easier to solve compared to no-limit Texas hold’em since
the limit on betting places significant restraints on the number of possible game
plays. The degree to which cancer gameplay is a limit or no-limit game is an inter-
esting question for future investigation—here the limits are resource expenditures
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or allocations to the game by the cancer and the oncologist’s time and actual mone-
tary expenditures, or bets, for the therapy actions. Multiplayer poker is even more
complex and possesses a non-computable Nash equilibrium [146]. Cancer’s game
against the oncologist is most certainly a multiplayer game on cancer’s part since
it plays multiple strategies simultaneously, and even shares cards from the hands
of its multiple players within the molecular defense armamentarium it brings to
game. Perhaps that is an insurmountable game for oncologist, even with improved
AI tools. Only further investigation will provide the answer. Several signposts for
further research are provided in Cancer’s Intelligence [112].

Since information and information transfer grounds computation, and computa-
tion can be regarded as a partial cancer ground,we can askwhat grounds information?
Information theory is derived from work in the nineteenth and twentieth centuries
from Gibbs, Boltzmann, Turing, Nyquist, von Neumann, Shannon, Landauer and
others. Landauer showed the important relationships between information, entropy
and energy and Shannon derived the measure of information as the Shannon entropy.
Landuuer showed that the storage of 1 bit of information requires work equal to
kTln2, k being Boltzmann’s constant and T temperature [149]. Landauer also origi-
nated that concept that “all information is physical.” That is, to be information it must
be physically represented or encoded [150]. In other words, information is a physical
entity. In fact, the universe can be regarded a having computed itself from its very
beginning through the information transfer among its physical entities, essentially a
self or intrinsic computation [151–154].

Further examination of these important concepts is far beyond the scope of this
article, but current consideration do demonstrate the point that grounding will even-
tually reach its bottom at some primitive or irreducible fact that is itself ungrounded,
some of which are energy and entropy, and even symmetry, as addressed above. For
the purposes of understanding foundational aspects of cancer, we do not need to
reach a bottom ground to achieve a useful and fundamental of explanation of cancer.
Rather we only need to understand cancer at a level where we can attack and eradi-
cate it using computation, symmetry breaking, and other foundational concepts yet
to be examined. We are not concerned with what happens to the information cancer
formerly possessed once it is destroyed.

6 Conclusion

This examination of the fundamental nature of cancer by employing essence and
ground concepts yields new insights. Two aspects of cancer’s ground have been
highlighted here and in more detail previously [71, 112]. Cancer’s broken symmetry
is a central feature of cancer diagnosis, monitoring, and treatment employed every
day in medical practice. More abstractly, the broken symmetry of the cancer gene
and other regulatory networks provides guidance for directed therapies at network
sites of reduced Aut(G), since these sites have greater attack vulnerability. Other
practical applications of broken symmetry in cancer are presented elsewhere [71].
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The approach of drilling down to cancer’s fundamentality is not just a metaphysical
exercise, but one that can yield new practical insights for cancer treatment. Indeed,
the science we practice today is based on foundational philosophical concepts.

A second result of the cancer ground analysis is that computational intelligence
is a necessary cancer property. Each cancer move in space and time is a computed
decision within a vast possibility of alternatives, whether in response to innate body
defenses or to the oncologist’s use of lethal measures to eradicate the cancer. There
aremany incompletely-explored questions in this category, including: the structure of
cancer’s intrinsic biochemical computer, how information is stored, and how cancer’s
computation can be quantified in calculations per second as for external computers
(such as the Summit computer, at 200 quadrillion calculations per second). Recently-
developed AI algorithms for the most complex human gameplay of poker could be
extended and adapted for better play against cancer once intrinsic cancer computation
is better understood. Bluffing, self-aware computing, and pre-computation of future
moves are other intriguing aspects of computational intelligence that merit further
examination in cancer [112].

Evolution and adaptation is another ground property of cancer, but is beyond the
scope of this article. It requires examination, as has been accomplished for the cases
of symmetry breaking and computational intelligence. A central question will be to
determine the extent towhich evolution is grounded by broken symmetry and compu-
tational intelligence, or grounded by other phenomena. There is a limit to how much
information can be stored by cancer cells and networks. Evolution therefore seems
to be a necessary cancer property. Improved understanding of the grounds of cancer
evolution could result in improved approaches to disrupting it, thereby benefiting
cancer patients. This has been the approach in the analysis of symmetry breaking and
computational intelligence, that is, to take the abstract analysis to concrete measures
for clinical care.

The stochastic or indeterministic nature of cancer is another category requiring
further ground analysis. Random fluctuations extend from gene mutations to small
numbers of transcription factors stochastically binding to gene regulatory sites. How
do deterministic features of ground overlay and interact with the randomproperties of
cancer? Some signposts exist in the ground literature, but more work is needed. Use
of the Langevin equation has proven helpful in examining the behavior of chromo-
somal systemdynamics—including inVDJ recombination—and could therefore find
application in systems with deterministic and stochastic features [31, 46, 155–158].

This chapter has examined the application of essence and ground analysis to
cancer. Some conclusions have been reached for symmetry breaking and compu-
tational intelligence, but more work is needed, as is commonly the case in intro-
ducing new ideas to solve old problems. This must be a novel multidisciplinary
effort, including the familiar cancer disciplines of molecular biology, evolution and
genetics, and adding back philosophy, from which all conceptual knowledge flows.
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Complementarity, Complexity
and the Fokker–Planck Equation;
from the Microscale Quantum Stochastic
Events to Fractal Dynamics of Cancer

Przemyslaw Waliszewski

Abstract Tumourigenesis possesses no equivalent among known physical
phenomena. It is initiated at the quantum level by thermodynamic fluctu-
ations of macromolecules. Accumulation of non-lethal alterations in quasi-
deterministic dynamic cellular network of genes and their regulatory protein elements
facilitated by changes in microenvironment results in a weak emergence of non-
complementary, malignant phenotype. The Weibull distribution of cancer incidence
suggests that neuro-immuno-hormonal network modifies that process. Eucaryotic
cells are supramolecular objects. They make use of quantum entanglement, quantum
tunneling, coherence, and chirality in formation of novel molecular couplings with
both multiple feedbacks, synergy, and hysteresis. Complementarity at each integra-
tion level and non-ergodicity are their distinguishing features. Quantum effects may
contribute to the conjugated appearance of cancer mutations. Connectivity, that is,
coupling between integration levels is associated with the emergence of at least three
features: fractal geometry of space–time, in which growth occurs, conditional prob-
ability of events, which reduces sensitivity to the initial conditions, and entropy. The
latter one determines both a capability of the supramolecular system for transfer of
biologically relevant information and evolution of intercellular interactions. There
is a limit for self-organization of cells into structures of higher order defined by
the Fibonacci constant. A relationship between sigmoidal dynamics and the Feigen-
baum diagram suggests that both growth and self-organization occur with parame-
ters within the Mandelbrot set. The set of non-interacting, infiltrating cancer cells
becomes topologically dense. It has the highest entropy. The global spatial fractal
dimension approaches the integer value. Hence, the coefficient of cellular expan-
sion is a novel quantitative measure of biological tumour aggressiveness. It is based
on complexity of intercellular interactions. Neither biological complexity can be
reduced to physical one, nor be fully mathematized. Computer simulations may help
to elucidate details of tumourigenesis. Themathematical models should be expressed
in the algebraic form of fractal sheaves and fractional equations.
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1 Introduction

Multicellular spatial transformations underlie both morphogenesis and tumourigen-
esis. Both proliferation and migration of cells may proceed in the similar timescale.
Morphogenesis comprises teleological organization of cells into specialized tissues
and organs as well as their complementary integration into one organism. Tumouri-
genesis results in formation of tissue with both distorted spatial organization of cells
and non-teleological function. A variety of molecular aberrations modifies intra- and
intercellular feed-back interactions so much that transformed cells loose polarity,
cease local cooperation, evade apoptosis, and grow autonomously. They escape the
neuro-immuno-hormonal surveillance owing to both damage at different levels of
intraorganismic integration and immunological malfunction. Tumour progression
ends up in metabolic failure in different organs and death of multicellular organism.

In response to environmental factors or physical forces, tissues can disintegrate
or counterbalance the perturbation. In that latter case, molecular, cellular, or neuro-
immuno-hormonal mechanisms will be activated. Organism reacts with alterations
in circulation, inflammation, degeneration, or tumourigenesis [1]. Tumourigenesis
is a complex, non-complementary, temporo-spatial, multistep tissue phenomenon. It
seems to be initiated by alterations in cellular dynamic network of genes and their
regulatory protein elements that occur in a specific kind of cells called stem cells.
Those cells differentiate towards normal phenotype and renew a tissue of origin. In
response to chronic perturbations, stem cells may undergo amultistep transformation
towards cancer stem cells; a source of malignant phenotypes present within a malig-
nant tumour [2, 3]. Neither cancer cells can appear as a result of de-differentiation
in short living matured cells [4], nor that process is just a phase transition seen in
physical systems [5]. While phenomena that resemble phase transition, such as the
GTPase-controlled dynamic chain reaction of G-actin-ATP polymerization do occur
in cells, both the compact and teleological organization of macromolecules excludes
such simple scenario [6]. In addition, some steps of phenotype transformation are
irreversible owing to both accumulation of molecular defects in cellular dynamic
network and their transfer to the next cell generation. In parallel to transformation
of stem cells into cancer stem cells the primary complementarity of the multilevel
interactions within the organism undergoes alterations owing to aging or environ-
mental factors, such as radiation, smoking, alcohol, carcinogens, or oncoviruses.
Those changes occur at different integration levels, what results in both malfunc-
tion of neuro-immuno-hormonal system and natural selection of cell phenotypes.
In consequence, malignant cells progress and form metastases eventually. Trans-
formed cells form initially geometric patterns as normal cells do. Their growth is
correlated, and temporo-spatial intercellular associations persist over some period.
Pattern formation is the essence of emergence and self-organization, that is, a sponta-
neous formation of globally coherent pattern out of local interactions. On one hand,
self-organization of cells into tissue structures of the higher order, such as glands
is limited by the Fibonacci constant (see Appendix 9.5). On the other hand, diverse
patterns formed by cancer cells evolve until they attain both maximal complexity and
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maximal entropy. At that stage, malignant cells cease intercellular interactions and
metastasize spontaneously following those two principles that seem to determine the
natural course of disease [7].

2 From Quantum Events to Phenotype Transformation

All macromolecules, either proteins, RNAs or DNA, undergo spontaneous deter-
ministic chaotic oscillations at the quantum level caused by physical forces whose
average value in time is zero [8]. For example, aberrant activities of various proteins
including DNA polymerases, DNA methyltransferases, DNA demethylases, ATP-
dependent chromatin remodelers, or histones were observed in response to the fluc-
tuations of energy. All those alterations occur in parallel and may contribute to the
phenotype transformation towards malignancy. Those thermodynamic fluctuations
occur in response to a variety of energy impulses, such as heat, acoustic or elec-
tromagnetic waves, radiation with high-energy particles alpha, ultraviolet radiation,
X-rays etc. It is well-known now that DNAmutations are initiated as quantum jumps
[9, 10]. A hydrogen bond joins base pairs in DNA. There exists a double well poten-
tial along a hydrogen bond separated by a potential energy barrier. The double well
potential is asymmetric with one well deeper than the other, so the proton normally
rests in the deeper well. For a mutation to occur, the proton must have tunneled
into the shallower of the two potential wells undergoing a tautomeric shift, that is, a
move from one position in pyridine or pyrimidine to another one. If DNA replica-
tion takes place in that critical, instable state, the base pairing rule for DNA may be
jeopardized causing a mutation [11]. In the presence of heavy metal ions, radicals,
or chemical compounds, fluctuations stabilize and will be fixed in DNA structure
as various gene or chromosome aberrations [12]. DNA sequence can also change
owing to cell infection with some viruses with oncogenic potential, such as human
papilloma virus (HPV), Epstein-Barr virus (EBV), hepatitis B virus (HBV), hepatitis
C virus (HCV), human T-lymphotrophic virus (HTLV) or human immunodeficiency
virus (HIV) [13]. Some of gene mutations may already be present in germline cells
and are of hereditary nature.

DNA mutations occur with frequency 10–6/cell divisions (reviewed in [14]). In
addition, errors in DNA synthesis during replication or repair occur at random and in
parallel in different somatic stem cells [15]. Those errors lead to DNA damage and
occur with a frequency of 104–106/cell/day [16]. The frequency of gene mutations
can even be increased in the synergistic manner if phenotype gets growth advantage
over the non-mutated cells during the process of natural selection [17]. Fortunately,
only about 2% of all DNA defects occur in exons, that is, in the gene parts that are
transcribed to messenger RNA to proteins. Exon sequences are rich in Alu elements,
CpGs islands, and (G+C) content. They possess varied multifractality and histogram
entropy as measured by the chaos-game representations of gene structure [18, 19].
Since majority of DNA defects occur in the non-coding regions of DNA with low
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or no multifractality, those defects are neutral or lethal for normal-appearing stem
cells. They do not participate in appearance of malignant phenotype.

Proteins with altered structure are usually eliminated from cells unless the areas
modified by mutations are covered by the rest of molecular structure; the case best
exemplified by the dimerized steroid receptors and their hydrophobic domains [20].
If alterations appear in specific locations of proteinmacromolecules [21], or if a novel
macromolecular structure confers benefit favored by natural selection of cells, or if
their presence initiates some processes, such as lysine acetylation, leading to activa-
tion of transcription factors [22], cell phenotype may change irreversibly. In parallel,
aberrant DNAmethylation activates or inactivates various genes. Importance ofDNA
methylation for development of normal tissues can be best seen during embryoge-
nesis or aging. That process operates on unchanged DNA sequence of CpGs that
are heavily methylated in embryonic stem cells (MESC). It is controlled by some
transcription factors, such as Oct4, Sox2, Klf4, and c-myc [23]. Hypomethylation
of the MESC sequences may occur together with hypermethylation at stem cell
PolyComb Group Target genes (PCGTs) three years in advance of the first morpho-
logical neoplastic changes. The MESC hypomethylation progresses from the stage
of primary carcinoma up to themetastatic stage [24]. If the process of DNAhyperme-
thylation occurs in genes with altered sequence or in their promoters, cell shape, cell
adhesion, or rate of cell divisionmay change. For example, methylation of ε-cadherin
promoter decreases expression of that adhesion molecule on surface of cancer cell
and enables both a change of cell shape and its migration [25].

Appearance of malignant phenotype relies not only upon some critical DNA
alterations. Subcellular organelles, such as mitochondria, lysosomes or endoplasmic
reticulum also contribute to the appearance of the novel phenotype. It is impossible
to describe all changes that occur in those organelles in details. Briefly, calcium-
dependent stimulation of three matrix-located key enzymes, that catalyze reactions
upstream of or within the Krebs cycle, regulates the entire cell metabolism. The
calcium uptake by mitochondria takes advantage of their close positioning to the
calcium-releasing channels of endoplasmic reticulum. There is a system of special-
ized proteins that sustain the calcium exchange between those organelles and activate
apoptosis in normal cells ifmitochondrial calcium load is excessive. That precise, fine
regulation will be replaced during tumourigenesis by the hyperactivation state asso-
ciated with appearance of some additional biochemical pathways. Those pathways
regulate synthesis of reactive oxygen species, modify cellular metabolism, influence
energy production, stimulate cell proliferation and promote tumourigenesis [26–28].
Endoplasmic reticulum is involved in protein, lipid, and steroid synthesis. It serves as
a transportation systemengaged in protein folding conforming to a nontrivialminimal
surface, that is, a surface that locally minimizes its area according to surrounding’s
pressure [29]. Endoplasmic reticulum possesses a fine-tuned transmembrane luminal
surveillance system composed of a circuit of three proteins called unfolded protein
response. That system activates in response to a buildup of misfolded proteins known
as endoplasmic reticulum stress. Since that system requiresATP as the energy source,
mitochondria undergo changes to increase both their number around endoplasmic
reticulum and contacts with that structure. Some transcriptional and translational
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measures aswell as apoptotic signalingwill be used to restore the balance. The exces-
sive gene activation, increased protein secretion, hypoxia, oxidative stress, growth
signals, inadequate amino acid supplies, glucose deprivation, and lactic acidosis
that occur during tumourigenesis also end up in both endoplasmic reticulum stress
and hyperactivation of the system of unfolded protein response. The hyperactivated
system sends then signals to both the autophagy system and cytoskeleton. That
latter action facilitates cytoskeleton remodeling and the epithelial-to-mesenchymal
phenotypic transition; a prerequisite condition for metastasis formation [30]. Malig-
nant cells have different ratio of F-actin to G-actin, possess altered cytoskeleton or
lose it, what results in disappearance of the “lumen-basement membrane” polarity.
Interestingly, ATP synthesis occurs in transformed cells through the low-efficient,
faster anaerobic glycolysis. Molecular events that drive aberrant proliferation of
malignant cells upregulate glycolysis and downregulate pyruvate mitochondrial flux
without impairing mitochondrial function (Warburg effect) (reviewed in [31]). In
consequence, cancer cells have both up to 17-fold less ATP and lower electric trans-
membrane potential as compared to their normal counterparts. Also, they distribute
energy among a lower number of degrees of freedom, what implies lower stability
of growing tumour tissue in comparison with the normal counterpart [32]. However,
cancer cells continue to exploit oxidative phosphorylation to produce intermediates
for enhanced nucleotide synthesis using other substrates, alternative to pyruvate,
such as glutamate and fatty acids.

While all the above-mentioned changes that occur at the microscopic scale also
enable a continuous flow of information, energy, or matter typical of normal cells,
malignant phenotype, characterized at the macroscopic scale by autonomous and
immortalized growth, is non-complementary with the other tissues of multicellular
organism. Owing to interactions with microenvironment, that also undergoes some
critical changes (reviewed in [33]), cancer cells diversify rapidly into subpopulations
with different dynamics of growth. Tumour tissue, that emerges, loses the teleolog-
ical character of its normal counterpart. In particular, the ratio between the surface
area and volume of cells has an enormous impact on their behavior, functions, and
heat exchange with environment. While phenotypically normal cells can achieve a
large ratio of surface area to volume with an elaborately convoluted surface, like the
microvilli lining the small intestine or internal branching of bronchial tree, charac-
terized well by the global spatial fractal dimensions, disappearance of some special-
ized adhesion molecules either in external cell membrane of cancer cells or in their
mesenchymal microenvironment results in shape modification [34]. For example,
metastatic cancer cells lose their fractal borders. They become small, spheroidal
objects. DNA synthesis dominates in those cells. Both the ratio of cytoplasm to
nucleus and the ratio of surface to volume decrease. The latter one approaches the
limit typical of the sphere, that is, 3/r, where r stands for the sphere radius. Since a low
surface area to volume ratio is a strong inhibiting force for thermodynamic processes
that minimize free energy, those processes slow down. Those cells synthesize fewer
functional proteins, and, therefore, are not able to perform many biological activities
typical of their normal counterparts.
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3 The Quantitative Measures of Biological Tumour
Agressiveness

Cancer cells form a colony, a kind of autonomous cellular dynamic system. Those
cells develop first a network of tunneling nanotube connections within the colony
spanning hundreds of microns. Those nanotube connections enable intercellular
transport of ions or subcellular organelles, such as mitochondria and facilitate the
intracellular co-operation [35]. Cancer cells interact also with normal cells in their
environment, such as endothelial cells and fibroblasts. Those interactions initiate
both angiogenesis, that is, formation of blood vessels and metastasis formation [36].
Angiogenesis within a colony of cells with malignant phenotype enables much more
effective circulation of oxygen and substrates in that tissue system, what increases
its dynamics of growth. That colony can also increase in size. Cancer cells undergo
epithelial-to-mesenchymal phenotypic transition and spread over the body and colo-
nize the distant organs as metastases. Genetic analysis revealed that first metas-
tases possess a similar profile of gene mutations as primary carcinomas. However,
secondary metastases, that originate from the primary ones, contain cells from
different clones with the mixed profiles of gene defects [37]. The spatio-temporal
evolution of colonies of cancer cells as well as their invasion seems to underlie the
Allee principle. The Allee principle relates population size with its growth rate [38].
Metabolic alterations initiated in the local lesion at the level of subcellular organelles
modify eventually intracellular metabolism, intercellular interactions, and influence
multicellular organism composed of 3–4 × 1013 cells. All those events determine
the course of tumourigenesis as a disease.

Malignant tumour is a local tissue structure composed, in the case of carcinomas,
not only of epithelial cells with malignant phenotype, but also fibroblasts, muscle
cells, and blood vessels. Evolution of geometric patterns formed by cancer cells
proceeds from highly ordered structures with both low complexity and low entropy,
such as glands to structure with no organization with both high complexity and
entropy, such as cell infiltrates. Since a digitalized image is a snapshot of some
mathematical function of two spatial variables that determine localization of cancer
cells, tumour structure can bemeasured objectively, unequivocally, and in a synthetic
manner by a set of complexity, diversity and homogeneity measures. Thosemeasures
define the quantitative system for stratification of prostate cancer patients into classes
of equivalence called also classes of complexity [39–42].

The application of the quantitative measures revealed some fundamental facts.
First, natural evolution of the histological tumour patterns is associated with the
increase in both entropy and complexity [39]. That process is described by the funda-
mental relationship between the global spatial information fractal dimension D1 and
entropy. Malignant cells change the epithelial phenotype into the mesenchymal one
using a specialized genetic circuit composed of two interconnected chimericmodules
and metastasize [43]. It is important to notice that metastasis formation occurs at the
maximal values of both entropy and global as well as local fractal dimensions [7].
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Second, there is a quantitative limit for self-organization of cells, either normal
or malignant, into tissue structures of the higher order such as glands. That limit
is defined by the Fibonacci constant [7] (see Appendix 9.5). Intercellular inter-
actions can be characterized quantitatively by a novel measure called the coeffi-
cient of cellular expansion. That coefficient is a function of the global spatial fractal
dimensionD0 that characterizes a dynamic process occurring within the surrounding
Euclidean space with the integer dimension [44]. More specifically, it is defined as
a ratio of the fractal dimension to the Euclidean dimension minus one. That func-
tion allows a classification of dynamic systems into three categories. If the fractal
dimension equals the Euclidean dimension, then the system is a non-interacting one,
such a neutral gas closed in a container. If the fractal dimension is lower than the
Euclidean dimension, then the system is an interacting one. If the fractal dimension
is greater than the Euclidean dimension, then the system has a fractal memory, that
is, stores information about the former events.

If the global fractal dimension is different from the Euclidean integer dimension,
connectivity between the interacting cells, that is, interconnectedness which denotes
the existence of complex, dynamic relationships in a population of cells leading
to the spatial and temporal emergence of global features in the system that would
never appear in a single cell existing out of the system, increases. Then, the limit
for the ratio of the integer Euclidean dimension of the space in which proliferation,
growth and self-organization of cells occur to the global spatial capacity fractal
dimensionD0 equals the Fibonacci constant Φ. Accordingly, tumour aggressiveness
can now be better described in terms of complexity of intercellular interactions rather
than by an imprecisely defined similarity of tumour structure to the normal one. It
can be measured quantitatively by the coefficient of cellular expansion with the
frame of reference defined by the Fibonacci constant [7] (see Appendix 9.5). It is
worth to notice that the above quantitative relationship indicates that both tumour
formation and tumour expansion depend not only on the potential of interacting
cancer cells but also on the support of available mesenchymal microenvironment [33,
45]. That conclusion supports also the course of anharmonic Morse-like potential
associatedwith sigmoidal dynamics of tumour growth in early tumourigenesis, before
angiogenesis takes place, and the interplay between drift and diffusion [46, 47]
(see Appendices 9.1–9.3). Moreover, interactions within malignant tumour can be
represented by a set of undirected graphs, with emerging holes characterized by the
additional topological measures of homology, such as the local clustering coefficient
or the Betti numbers, and analyzed by methods of algebraic topology. From that
perspective, either normal or tumour tissue is represented topologically by a fractal
sheaf [42].

4 The Weibull Distribution of Cancer Incidence

Morphogenesis or tumourigenesis represent the most dynamic natural phenomena,
in which physical complexity meets biological complexity. Those phenomena
comprise various microscopic processes including regular ones, that is, processes
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with dynamics that is predictable for any time-point, (e.g., sinusoidal glycolytic
oscillations) and chaotic deterministic processes, that is, processes with dynamics
that is unpredictable in time, but is characterized by certain regularities, (e.g., the exis-
tence of strange attractor for a biochemical reaction). The fundamental theorem of
calculus, the Stokes theorem on manifolds states that a total change on the boundary
of a dynamic system equals the sum of little changes on inside the system [48]. By
analogy, the sum of local dynamic microscale processes in a cell or tissue, in which
random events with probability distribution co-exist with the chaotic deterministic
ones are integrated into a global, predictable, macroscopic dynamics.

The phenotype change depends on the co-existing alterations of both DNA
sequence and methylation status as well as their influence on DNA multifractality,
on activity of cellular network of genes and their regulatory elements, on the cell
microenvironment, and on size and structure of cell population [14, 33]. The Vogel-
stein model assumes that colon tumourigenesis depends exclusively on the appear-
ance of specific molecular defects in some limited number of critical, gate-keeper
genes in response to random external events. According to that model, tumourigen-
esis is a deterministic linear evolutionary phenomenon [4]. Most people would have
to develop colon cancer with the exponential distribution of incidence in a func-
tion of time (age). Yet, the incidence of colon or prostate cancer in a function of
time is described by the Weibull distribution with the shape parameter larger than
one [49, 50]. The incidence decreases after reaching its maximum at some age and
some people will never develop cancer. TheWeibull distribution of cancer incidence
supports the view that tumourigenesis is a quasi-deterministic phenomenon deter-
mined early in life by an accumulation of both deterministic and non-deterministic
molecular defects in proliferating eucaryotic cells [51] and influenced by both
the local (microenvironment) [33] and global (neuro-immuno-hormonal system)
networks [2, 3]. That accumulation may be facilitated by quantum effects leading
to the conjugated appearance of changes in DNA sequence [11]. Natural selection
of clones plays also important role [4]. Some of those defects are neutral for muta-
tion spreading in a population of cancer cells. The neutral evolution occurs in about
30% of human cancers, such as colon or stomach one [52]. The other mutations
are advantageous or unfavorable for proliferation of cells with defects. The spatial
distribution of cells with gene mutations also plays some role. The structured spatial
distribution of mutated cells offers the highest dynamics of cell proliferation versus
the intermediate one formass-action distribution or the lowest one for the hierarchical
distribution [53].

tumourigenesis in human bladder provides a model that shows how a difference in
a profile of molecular defects determines activation or inactivation of some important
metabolic pathways and leads to a difference in patterns of macroscopic growth. For
transitional cell carcinoma, two distinct genetic pathways have been identified (see
for details [54]). The first one starts with aberrations of the fibroblast growth factor
receptor (FGFR-3) gene that is responsible for recurrent low-aggressive superficial
bladder cancer. The second one is associated with aberrations of p53 gene that leads
to an ultimately highly aggressive muscle-invasive cancers. The origin of the aber-
rations in those pathways is thought to be both multifactorial and multifocal. On one
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hand, genetic, structural, and numerical chromosomal alterations accumulate and
contribute to the biological progression of the disease. On the other hand, methyla-
tion of promoter regions of genes inactivates gene promoters, and leads to silencing
of important genes. It is known that methyl groups can influence protein-DNA inter-
actions without altering the DNA sequence or base pairing in the urothelium, even
before neoplastic lesions can be seen. The frequency of those aberrations increases
with disease progression. The polymorphic variations in theDNA sequence appear to
be associated with the inherited transitional cell carcinomas. Finally, both molecular
defects in genes controlling the programed cell death andDNA repair are particularly
important for immortalization of transformed cells in any type of cancer. Mutations,
genetic drift, and selection act on billions of cancer cells and their microenvironment
leading to tumours’ emergent behavior and tree-like cancer evolution with branching
patterns of genomic alterations [55]. Cancer is a dynamic evolutionary entity with
significant heterogeneity across primary and secondary tumours or patients with
tumours of the same histological type. Subclonal populations of cancer cells with a
variety of molecular defects interact each other in the antagonizing or synergizing
manner. Those interactions play a role in emergence of resistance to therapy or
influence patient’s survival [51, 55].

The Weibull distribution of cancer incidence suggests that transformed cells of
young patients grow and self-organize within a molecular network that possesses
different integration than the old patients. Indeed, there is a clinically relevant differ-
ence in dynamics of cancer disease between a population of younger and older
patients. That difference can be well-seen particularly in prostate cancer, where
disease has usually greater dynamics and cancer is more aggressive in younger
patients [49–51]. On one hand, the potential of individual cells for growth decreases
with age. On the other hand, mutations do accumulate in all cells during aging.
In addition, interactions with microenvironment influence phenotypic features of
cancer cells [33]. The unchanged microenvironment facilitates both differentiation
and self-organization of even highly malignant cells as was observed in experiments
with metastatic prostate cancer cells LNCaP grown in chicken embryo (data unpub-
lished). Genomic instability, telomere alterations, andmicroenvironment changes are
aging-related processes. Even if some aging cells develop malignant phenotype after
the host reaches certain critical age, they do not have enough potential to form an
autonomous colony, and to metastasize. In fact, cells with normal-appearing pheno-
type in the senescent organism slow down dividing. Tissues undergo the process
of atrophy characterized among other by reduction in both size of cells and their
potential for both intercellular interactions and co-ordination. All those phenomena
may explain the appearance of the Weibull distribution in cancer incidence.

5 Cell as a Complex Supramolecular Dynamic System

An insight into perhaps less well-known features of eucaryotic cells, cellular
organelles, and macromolecules is necessary to comprehend both the origin and
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evolution of neoplastic diseases in the specific context of both biological complexity
and complementarity. It should also be kept in mind that it took billions of years
before supramolecular cellular systems were able to reach their optimum for both
molecular self-organization and integration.

According to the classical biological theory formulated in 1839 byMathias Jacob
Schleiden and Theodor Schwann [56, 57], cells are the fundamental units that deter-
mine structure, organization and function of organisms. The autonomous character
of cells is determined by two elements. First, semipermeable bilayer lipoprotein
membranes separate cells from their environment. Matter is transported through
those membranes by passive, that is, simple or facilitated diffusion, without the
energy input, along the concentration gradient or by active diffusion using chemical
energy, against the concentration gradient. Specialized proteins, such as ion channels,
cell junctions, adhesion molecules, hormone receptors, and enzymes are anchored
to those membranes. Using receptor proteins and their capability for reversible non-
covalent binding, cells not only control intra- and intercellular transport of matter,
but also respond to a variety of signals, regulate shape, and migrate [58]. Some
of those receptors can also detect mechanical or electromagnetic forces. Then, the
complexes ligand-receptor or receptors activated by physical energy transduce infor-
mation along signalling pathways, what ends up first in a response of genes, then
the regulatory protein network, and finally cells. Second, each cell contains heredi-
tary genetic information necessary to initiate and to regulate all metabolic processes
including process of cell division. The classical biological model of a cell assumes
tacitly a one-directional flow of information from nuclear DNA through mRNAs to
the functional protein level. That model does not, however, indicate multidirectional
processes responsible for the temporo-spatial co-ordination of growth inmulticellular
organism, nor explains how cells regulate their size and shape [4]. Cells are objects
that interact each other, co-operate, self-replicate, grow, differentiate, mature, adopt,
migrate, self-organize into tissue structures, and self-eliminate (apoptosis).Metabolic
networks of coupled exergonic, that is, spontaneous and endergonic, that is, non-
spontaneous molecular reactions determine in a teleological manner capability of
cells for carrying out chemical, electrical or mechanical work.

From the perspective of science of complexity, a living cell is a complex (i.e. emer-
gent network of multiple cross-interacting elements sensitive to initial conditions,
with multiple equilibria and morphological patterns), multidimensional, multiscale,
non-linear (i.e. lack of the proportional relationship between input and the outcome),
quasi-deterministic (i.e. the co-existence of deterministic and non-deterministic
events), thermodynamically opened, non-ergodic, complementary supramolecular
dynamic system. That system is in non-equilibrium and possesses both a multidirec-
tional flow of information and a distributed rather than centralized control [4, 59].
That supramolecular system has numerous non-linear intra- or intercellular inter-
actions spanning different levels of organization, both spatial and temporal scales,
processes and phenomena [4, 8]. Non-linear interactions are the essence of both
physical and biological complexity [60, 61]. Those interactions also determine the
emergence of spatial or temporal fractal geometry seen in biochemical processes or
tissues [62].
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Eucaryotic cells emerged most likely owing to both evolution of intracellular
intermolecular couplings and natural selection of phenotypes. Those objects are
composed of various macromolecules organized in a specific, teleological manner.
Molecular interactions do not occur in those systems at random. Interactions are
not only non-linear, but also frequently synergistic, that is, the result is qualitatively
unique and quantitatively larger than a simple sum of disconnected events. Feedback
loops of non-linear interactions are responsible for growth or decay at the exponen-
tial rate. The coordination of interactions in time and in space occurs precisely in a
decentralized manner with sensitivity to changes in intra- and extracellular condi-
tions. Connectivity between elements of the complex system is the other pillar of
complexity. It changes Euclidean geometry of time–space that will be now rede-
fined by topology of networks with the global and local spatial or temporal fractal
dimensions, degree of connectivity of elements and their spatio-temporal location.
Connectivity enables self-organization of cells into structures of higher order such
as glands responsible for both secretion and absorption. Despite of the hierarchical
anatomy, all elements in the organism have interconnected each other.

It must be emphasized that eukaryotic cells are not perfect supramolecular
systems. For example, they use the dimerized steroid receptors instead of the
monomers to induce gene expression in nuclei. That dimerization has been forced
by mutations encoding the hydrophobic domains of steroid receptors and repre-
sents no evolutionary benefit for cells [58]. Also, cells accumulated many viral
DNA sequences that play no important role in metabolic activity [13]. Despite those
marginal changes, cells and their macromolecules are sufficiently optimized for the
effective self-organization into tissue structures and well-adapted to changes of envi-
ronmental conditions. That optimization took about 4 billion years. For example,
RNAmoleculeswere not only able to selectRNApool starting from the initial random
sequence chimeric oligonucleotides formed by untemplated polymerization and self-
replicate [20], but also form ribozymes. Those are specialized RNA molecules with
catalyst activity present in ribosomes engaged in both cleavage and ligation of RNA
andDNA, aswell asRNAsplicing, tRNAsynthesis, or peptide bond formation during
protein synthesis [63, 64]. Enzymatic protein macromolecules present everywhere
in cells catalyze complex biochemical reactions in a reproducible manner with high
accuracy and efficacy at the minimal use of ATP energy [65].

6 The Unique Interactions in Supramolecular Cellular
System: Quantum Entanglement, Tunneling, Coherence
and Chirality

Specific features of macromolecules cause that eucaryotic cells are different from
any known physical systems. Also, their transformation to malignant phenotype is
more complex than just a simple phase transition in homogeneous physical systems,
in which a single control parameter, such as temperature, volume or pressure can
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shift the system near the equilibrium to the new phase. This is because normal cells
are characterized by highly complementary organization and fine-tuned functions.
Tuning is usually done by specialized enzymatic systems. If the existing comple-
mentarity is broken, some altered macromolecules may create spontaneously novel
molecular couplings or signalling pathways that continue to drive transformation to
malignant phenotype.

Intracellular biochemical reactions are of teleological nature [66, 67]. Those reac-
tions occur usually at the low amounts of reagents. Some genes, such as cyclins can
be expressed as a few transcripts per cell. Nonetheless, the appropriate mRNAs
encode enzymes that regulate important biological functions in both a selective and
powerful manner during the short period of cell division. Furthermore, intracellular
reactions occur in a limited volume. Substrates cannot gain the required activation
energy due to the Brownian motions to overcome the energy threshold. Unlike in
thermodynamics, where both passive diffusion along a gradient of concentration
and mechanical collisions of molecules with sufficient energy leads to chemical
reactions with rates dependent on temperature, concentrations, particle size, pres-
sure and the presence of catalysts, enzymes assure a precise, fine-tuned transfor-
mation of substrates. Macromolecules of enzymes or receptors are usually attached
to membranes as vector units, that is, a kind of nanochips, in which a product of
one reaction serves as a substrate for the next one. Signalling pathways, such as G-
protein-adenylate cyclase-cAMP-phosphorylase, or a process of mitochondrial ATP
synthesis exemplify the reaction vector units [68–70].

Both the stereochemical capability of enzymes for three-dimensional re-
distributions of intramolecular van der Waals forces in a range of 0.1 nm [71–73]
and chirality of molecules, that is, a geometric asymmetry that excludes superim-
position of molecular structure on its mirror image by any combination of rotations
and translations [74] underlay intracellular biochemical reactions. That spatial stere-
ochemical recognition is so precise that cells can bind actively some substrates, such
as glucose, an energy source, and inhibit absorption of its isomer, D-mannose. Some
experimental data suggest that enzymes use both quantum entanglement [75] and
proton tunneling [76] in their interactions with DNA or RNA. The phenomenon of
entanglement occurs if at least a pair of particles interact in a way such that the
quantum state of each particle of the pair cannot be described independently of
the state of the other one, including the situation when the particles are separated
by a large distance. That phenomenon implies novel, non-trivial understanding of
biological reality including the Bell’s concepts of superdeterminism and non-locality
[77–79]. For example, collective quantum effects might play a role in control of cell
size or in the conjugated appearance of cancer mutations.

Tunneling is a phenomenon in which a wavefunction representing the entire phys-
ical system propagates through a potential barrier. That phenomenon occurs usually
in objects smaller than 1–3 nm [80]. Quantum interactions are not well visible
among molecular cellular events at first glance. However, protein ion channels in
cellularmembranes use energy of chemical bonds inATPmolecules for tunneling and
active transport of kalium, sodium, and calcium ions. Also, a system of cytochromes
in mitochondria called the electron transport chain utilizes the electron tunneling
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phenomenon in the complex process of ATP synthesis that spans different scales of
organization from the quantum level up to the organelle one [81]. It seems thatmacro-
molecular systems with quantum states perform quantum computations detecting all
quantum states at once [82] and choosing the most optimal one as in the Grover
algorithm [83].

On one hand, quantum effects emerge in molecules not larger than 2 nm, such as
DNA or within small areas of protein macromolecules. Their surrounding vibrates, is
noisy, and rich in water molecules. In that environment, both quantum decoherence
and decay of quantum information occur quickly owing to the vibrational motions of
atoms present in larger protein macromolecules of about 10 nm in size [84]. Perhaps
the co-existence of the relatively small molecular areas, in which quantum effects
may emerge, with the larger macromolecular structure that facilitates decoherence,
enables a control over the emergence of the coherent states. Those states can then
appear for a particular purpose, such as electron or ion transfer and disappear quickly.
In that way, cells, cellular organelles, such as mitochondria, or cytoskeleton, that is,
a network of interlinking protein filaments composed of microfilaments (actin poly-
mers 7 nm in size), intermediate filaments (a variety of protein polymers 10 nm in
size) and microtubules (tubulin polymers 25 nm in size) can easier adapt oneself to
environmental signals by energy release, shape optimization, or cell division [85,
86]. Those events are associated with a change in cell structure mimicking a phase
transition. That change depends, however, on a chain of complex biochemical reac-
tions including a rapid synthesis of the specialized proteins. For example, protein
LAF-1, electrostatically disordered protein, drives intracellular phase separation of
P granules, RNA and protein assemblies, into liquid droplets, and is necessary for
RNA-protein interactions [87]. On the other hand, organisms developed a complex
network of the long-range neuronal, hormonal, and immunological mechanisms of
the receptor-ligand type that co-ordinates effectively multiple activities in multi-
cellular organism. Apparently, processes widespread in physical systems, such as
diffusion or phase transition are not sufficient to ensure the effective transfer of both
chemical signals and information in order to integrate the entire system. For example,
simple diffusion is effective on short intracellular distances only. In some real biolog-
ical settings, diffusion of an ion across a 100-cm-long neuron with a typical diffusion
coefficient D = 10(−5) cm2/s would take about 10 years according to the relationship
between the squared length of diffusion and the diffusion coefficient multiplied by
two.

7 Complementarity

Despite of the impression evoked by anatomical studies, multicellular organism does
not really operate according to the hierarchical organization of tissues andorgans. The
principle of complementarity describes better what happens during self-organization
of cells. There exists a complex network of precisely regulated couplings that connect
different elements, ranges, time scales, and levels of organization in the organism.
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Those couplings ensure the optimal flow of information, energy and matter between
cells, tissues, and organs aswell as with environment starting from the quantum level.
It took billions of years before multicellular structures reached that level of both
complementarity and optimization. The whole produces unique combined effects.
Majority of those effects, such as vision, speech, walking, hunting, thinking, playing
music, mood, consciousness is co-determined by the interactions between the whole
and its environment aswell as by the biological context. Neither they can be explained
with reference to both macromolecular and cellular features of the lower level of
integration (strong emergence), nor be simulated in silico. An embryo that evolves
froma single fertilizedmaternal cell incorporates different extracellular elements into
its complex metabolizing cellular network. Cells migrate long distances, far greater
than their linear sizes. They differentiate depending on location, hormonal influences,
and functional operations. A gradual, discrete, and harmonious growth of the entire
multicellular structure follows. Finally, central nervous system develops as a co-
ordination center. However, its operations depend on both impulses and substrates
provided by the peripheral organs, such as muscles, lungs, kidneys, or heart as well
as electric impulses coming from the cellular level of integration. That whole is a
non-ergodic object, that is, a dissipative dynamic system that does not fill up the
available time–space evenly like diffusion or Brownian movement do. Furthermore,
rules of the whole may influence the lower levels of integration. For example, a
depressive mood may end up in sluggishness, obesity, and loss of muscle tissue as
well as susceptibility to diseases. A coherent religious mood engages areas of brain
responsible for social cognition, brings psychical comfort, increases pain tolerance,
alerts immunological system and enhances resistance to infection or cancer [88].

Complementarity can be seen already at the level of quantum particles. For ther-
monuclear reaction to take place, a proton must be able to combine with a neutron to
produce a deuteron, a gradually burnt fuel. Simultaneously, the same proton must be
unable to combine with another proton to prevent the explosive course of the reac-
tion. It is complementarity of the nuclear forces maintained in the narrow range that
ensures the proper course of the reaction; either the weaker or stronger nuclear forces
would inhibit proton-neutron interaction or facilitate the destructive proton-proton
interaction [89].

Complementarity does not appear in the quasi-deterministic dynamic cellular
network owing to randomness. Complementarity emerges in a pervasive manner
along a process of self-organization of multicellular tissue structure. Multiple
complex feedbacks develop to stabilize the growing organism. Complementarity
is therefore the intrinsic feature of both complexity and connectivity in the self-
organizing system. Moreover, the emerging time–space, in which all microscopic
processes occur, gets fractal topology. On June 10, 1854, the important day in the
history of mathematics, Bernhard Riemann gave a habilitation lecture at the Georg-
AugustUniversity ofGöttingen,Germany.According toRiemann, geometry of time–
space is much more than just the static arena for physical events [90]. Dynamics of
the underlying phenomena influences the geometry of time–space and vice versa. By
studying geometry, one can get information about both the underlying dynamics and
complexity of the system. In the case of the interacting cellular systems, time–space



Complementarity, Complexity and the Fokker–Planck Equation … 33

emerges in statu nascendi in consequence of the multiple, nonlinear interactions
within the non-ergodic system. During that process, time and space not only couple
each other, but also get fractal structure [41, 46, 47, 62, 90] (see Appendix 9.3).

Stuart Kaufmann proposed a universal abstract scenario of self-organization for
some autonomous objects, such as cells. Those objects utilize several autocatalytic
cycles and search actively for energy sources. They can not only decrease or increase
barriers of potential energy, but also couple both spontaneous and non-spontaneous
thermodynamic reactions. In that way, cells do work by streaming energy in a tele-
ological manner for both self-replication and self-organization. They also use that
energy to construct some constraints for growth [91].

Cellular respiration is a good example of the precisely self-regulated, complex
biological process that holds the principle of complementarity. Regulation of that
process starts at the quantum level as a kind of the game between elemental particles,
electrons and protons. Those fermions exchange energy and activate large protein
complexes to transfer their energy gradually through the electron transfer chain up
to the final products, ATP and oxygen radicals [68–70]. From the perspective of
thermodynamics, synthesis of ATP from glucose is a complex process comprising
both exergonic and endergonic steps with the total available Gibbs free energy of
�G = –686 kcal/mol. Would be that reaction an exclusively spontaneous process,
energy of glucose bonds would be converted immediately into heat and light. Neither
chemical energy of ATP could be collected for self-organization, self-replication or
cell migration, nor any useful tissue activity could occur. Owing to coupling with
the non-spontaneous reactions both ATP synthesis and ATP accumulation within
cells are possible with efficiency of 40% at heat production of 60%. The process
is initiated by cytoplasmic glycolysis, that is of oscillatory nature [92]. It continues
as the intramitochondrial Krebs cycle. Cytochrome macromolecules are anchored
to the internal mitochondrial membrane in the ordered manner. Electron transport
occurs along the electrochemical potential gradient. Energy of electrons will be
accepted by oxygen molecules to produce oxygen radicals. At that quantum fractal
process, theATP proton pumpmaintains the proton gradient across themitochondrial
membranes to ensure the counterclockwise direction of movement of the α-subunit
of the enzyme; an element crucial for ATP synthesis and its release [68, 69]. Math-
ematical modelling indicates that radical oxygen species are not just by-products of
mitochondrial oxidative phosphorylation. That is a teleological process with fractal
dynamics, in which radical oxygen species play a role of a molecular clamp. That
clamp connects electron transfer at the quantum level with transformations of both
oxygen and organic molecules engaged in the Krebs cycle [70]). All macromolecules
involved in cellular respiration compose a complementary system. They possess a
capability to oscillate between the non-equilibrium and equilibrium state as well
as to recognize the infinitesimal, yet sufficient stereochemical changes in the three-
dimensional structure of cytochromes, what results in accepting electrons, pumping
protons and opening the internal ion channels. The entire process occurs at relatively
narrow window of temperature, pH, and ion concentrations [93].

Eucaryotic cells as supramolecular systems are composed of a variety of intercon-
nected subsystems with different functions, such as nucleus, nucleoli, mitochondria,
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ribosomes, lysosomes, membranes etc. Owing to mutual connections between those
subsystems, any change in one of them will cause some changes in the other ones
[94]. This may end up in a change of phenotype, that is a set of all features that a
given cell type has. One should realize that phenotype is a dynamic category. It is
phenotype, not genotype, that undergoes natural selection during the interactions of
cells with environment and selects the most favourable patterns of gene expression.
Since dynamic cellular network reacts to different environmental signals and trans-
fers them down to the gene level, some novel traits may develop and be reinforced
by natural selection; the statement best exemplified by metaplastic transformation of
epithelial cells exposed to the unfavorable conditions existing in surgical conduits,
fistulas, or chronic inflammation [95].

In general, depending on both cell type and their metabolic activity, expression
comprises 10,000–80,000 genes [91]. The number of possible gene states in that
network represents then a number 280,000. However, genes are conjugated in a kind
of teleological circuits that are activated or inactivated in response to environmental
signals in a regular or chaotic modus. If the modus of gene activation/inactivation
is regular, slow, and periodic, that is, if genes remain active or inactive for a longer
period, then the number of such circuits in relationship to gene number in the entire
network scales according to the polynomial function and equals square root of the
number of genes, that is, about 282. Those circuits determine a limited number
of phenotypes that not only compose important tissue structures, such as intestinal
crypts, but also co-operate each other within those structures in a complementary
manner. If genes are activated and inactivated in the chaotic deterministic regime,
circuit number scales exponentially with the size of the network. In that extreme
regime, each gene is a Boolean function of all genes in the network. Hence, the
estimated number of circuits is represented by the gigantic number, the square root out
of 280,000 all possible gene states [91]. The latter scenario seems to be typical of cancer
cells with multiple gene alterations in comparison with their normal counterparts.
The number of those molecular defects changes especially in more advanced tumour
stages, in patients undergoing chemo- or radiotherapy [96–99]. Those alterations are
in part responsible for resistance of cancer cells to anticancer drugs that develops
during therapy. Molecular changes during sequential therapy of metastatic prostate
cancer with abiraterone followed by enzalutamide or vice versa cause that both
progression-free survival and PSA reduction vary significantly [100].

It should be noticed that the principle “one gene-one phenotypic trait” is not a
universal one. The relationship between the number of genes involved in the emer-
gence of a phenotypic traits and the number of those traits is non-bijective. That
means that one gene may co-influence the emergence of more than one trait, and one
trait may be dependent on activation of many genes. G. Mendel has just assumed that
phenotype is determined by genotype unequivocally and, therefore, subordinated to
the latter one. Mendel needed that assumption to generalize results of the genetic
experiments and formulate the Law of Mendelian Inheritance [101]. His assumption
became a keystone of the deductive strategy of molecular reductionism in cellular
biology. Phenomenology permits, however, an alternative epistemological model of
a relationship between genotype and phenotype grafted in a more universal Husserl’s
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philosophy [102]. Both categories, genotype and phenotype, represent here comple-
mentary aspects of the same common, complex entity. They are coupled through
dynamic cellular network with multidirectional flow of information between its
elements [4]. Probability of events in that entity depends on both up- and down-
regulation of genes. It is also dependent on gene mutations as well as time. That
probability underlies the law of generalized diffusion, in which probability possesses
algebraic shape of Boltzmann-type equilibrium [103]. In fact, the extraordinary equi-
librium and complementarity of molecules, factors, or physical forces can be seen
in all complex cellular biological phenomena. Any imbalance leads here to both
functional alterations and structural deformations.

In the above-discussed context, cancer cells appear in the highly organized,
complementary, multicellular organism owing to the local intracellular accumula-
tion of diverse molecular defects. Those defects lead to the deterministic chaotic
rather than regular way of activation or inactivation of genes predicted by Stuart
Kaufmann. Profiles of gene expression in each tumour or at each stage of cancer
disease as well as molecular defects can be different. Those findings were confirmed
in experimental studies [18, 19, 51, 96–99]. The appearance of some unique metabo-
lites activates both novel molecular couplings and metabolic pathways [54, 96, 97].
This alters gradually cellular network and ends up in the weak emergence of malig-
nant phenotype. Although cancer cells interact each other and may also interact to
some degree with normal cells, they do not self-organize into the complementary
tissue. Owing to excretion of lytic enzymes, cancer cells cause destruction of their
microenvironment [104]. Metastasis formation appears to be the ultimate purpose of
cells with malignant phenotype. It is associated with increment of both entropy and
complexity in tissue system [7, 39]. According to the Bekenstein Bound, the amount
of information present in the finite fractals representing the idealized distribution of
cancer cell nuclei in adenocarcinomas is limited, and changes according to the ratio
1:1.94:2.64. A similar relationship can be seen in changes of entropy in the func-
tion of the global fractal dimensions (the coefficient of correlation 0.904). Entropy
determines the natural course of cancer disease [105].

8 Fractal-Probabilistic Dualism and Fractal Time–space

The first theoretical considerations as to the origin of frequency distributions in
biology suggesting probabilistic course of cellular phenomena were published in the
beginning of the XX century [106]. It is well accepted now that intracellular expres-
sion of genes,mRNAs or proteins is of stochastic nature. In other words, there exists a
probability function, which describes distribution of intensity of gene expression in a
single cell [103, 107, 108]. Majority of intracellular microscale processes are condi-
tionally interconnected in both fractal space and time. In contrast to some physical
systems, such as industrial chemical reactions or thermodynamic processes, intra-
and intercellular interactions are not random. Those interactions are either deter-
ministic chaotic, that is, they occur at the interface of randomness and order, or
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regular one [8]. Those deterministic chaotic phenomena are not seen at first glance.
Growth of cells and tissues at the macroscale is usually predictable. In the phys-
ical thermodynamic phenomena mentioned above, random microscale interactions
end up in the emergence of a predictable macroscale dynamics with the Maxwell–
Boltzmann probability distribution of energy or particle speed. That distribution
of probability appears in a system at equilibrium with maximal entropy and fixed
energy. Similarly, if the cell number is constant in a given interval of time, each cell
produces chemical energy of ATP, and transfers some of that energy to the other
cells, than the Maxwell–Boltzmann probability distribution function describes also
that process. In general, there is some special flow of information between the micro-
scopic and macroscopic level of organization that excludes randomness at the latter
one. In particular, the above-mentioned quantum molecular transformations exclude
randomness in majority of intra- and intercellular phenomena replacing it by some
equilibrium of regular and deterministic chaotic events in fractal geometric space.
Hence, the emerging mathematical description of that kind of phenomena at the
interface of micro- and macroscale is fractional calculus, not just classical differen-
tial calculus [109]. The principle of probability distribution implies that whatever
events occur at the microscale molecular level, intercellular interactions as well as
global dynamics remain relatively stable and evolve in a similarmanner. For example,
each malignancy engages different molecular events for both promotion of tumour
growth and tissue invasion. Those differences in molecular mechanisms can be seen
in malignancies originating from the same tissue, such as breast or prostate and
undergoing both a temporal and spatial evolution or inmalignancies originating from
closely related tissues, such as bladder and ureter epithelium [110–113]. Therefore,
molecular biological models of tumourigenesis are not universal. However, malig-
nant cells share many morphological similarities. In the extremal case, morphology
of non-differentiated cancer cells is identical independently of tumour origin.

Molecular cellular processes are both non-linear and bi-stable or multistable.
Those processes possess discrete states, may reveal oscillations of both substrates
and products or can adjust their dynamics according to the memory of the input
strength. In other words, the same input may release two different, molecularly stable
outputs. That kind of dynamics is described as hysteresis phenomenon. In the mathe-
matical sense, hysteresis phenomenon appears if a multi-branch operator transforms
the extreme values of the input into branch transitions. Hysteresis was identified in a
broad class of cellular phenomena, such as protein folding [114], DNA-protein inter-
actions [115], signaling with bistable stages [116]. For example, some enzymes, such
as caspase, catalyze the same reaction into different products depending on physical
parameters of the intracellular environment [117]. Concentrations of cyclins in cells
undergoing division follow a hysteresis curve. In consequence, there is required a
much higher concentration of cyclins during the shift from the G2 phase to mitosis
than during mitosis itself [118, 119]. Also, binding of oxygen to hemoglobin and
its dissociation into tissues is an example of the hysteresis phenomenon. Those
allosteric reactions are also synergistic, that is, binding of oxygen molecules to
hemoglobin is facilitated the more oxygen atoms bind to one hem molecule [120].
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According to Corning’s hypothesis, synergistic effects drive cooperative relation-
ships within supramolecular cellular system providing functional advantages in rela-
tion to survival and reproduction that have been favoured by natural selection. Indeed,
saturation curves for hemoglobin and for myoglobin are sigmoidal and hyperbolic,
respectively. That means that at low oxygen pressure, for example, in peripheral
tissues, hemoglobin has a large capacity for binding with oxygen while myoglobin
is already saturated in 100%. This situation exemplifies teleological character of
both macromolecules. Hemoglobin serves as the oxygen carrier. Myoglobin is the
oxygen reservoir for muscle cells. It is worth to notice that supramolecular syner-
gistic systems may react in a non-linear way to perturbations, such as mutations, so
that the outcomemay be greater than the sum of the individual component alterations
[121]. The last, but not least, hysteresis stands behind a feedback relationship. That
kind of relationship underlies any normal or pathologic regulatory processwith expo-
nential dynamics. It enables adaptation of cellular systems in changing environment
including self-organization of cancer cells.

Sigmoidal dynamics deserves more detailed consideration owing to its universal
character. It is typical for many molecular cellular phenomena including the rela-
tionship between a signal and a response of molecular cellular network as well as
gene expression induced or inhibited by a variety of transcription factors. In general,
that dynamics emerges if some inhibiting force appears in the interacting system
of elements as a regulatory constraint of the process [46, 47, 122]. For example,
that kind of response can be observed during enzymatic reactions, such as DNA
synthesis or during some cellular processes, such as monocytes activation during
inflammation. In those processes, sigmoidal dynamics emerges because of inhibi-
tion by products [123]. That kind of dynamics can also be seen during proliferation
of cancer cells in culture in vitro or in small animals (reviewed in [46, 47, 122]), but
not in larger organisms, such as humans. In that latter case, cancer cells proliferate
or decay exponentially. Cells growing rapidly in culture or in small organism have
both limited resources and space, what leads to inhibition of proliferation. Their
growth is exponential in the first phase, then comes to inhibition, and cell population
reaches plateau. Since larger organisms possess more resources, and much larger
fractal space available for expansion, sigmoidal dynamics does not emerge. The
sigmoidal dynamics can be described mathematically by the logistic function or by
the Gompertz function [46, 47, 122, 124]. Interestingly, if the continuous variable of
time will be replaced by the discrete steps, both functions can be transformed to the
same Feigenbaum diagram [47]. That diagram reveals the co-existence of both deter-
ministic chaos and order during the temporal evolution of cellular system [46]. Both
functions reflect the equilibrium of regular states and chaotic states with the same
Feigenbaum constant. Both that equilibrium and volume of the available comple-
mentary Euclidean space determine temporal and spatial expansion of a process with
sigmoidal dynamics, such as tumour growth [44, 46]. That latter finding indicates the
importance of microenvironment for tumourigenesis. The Gompertz function is also
a solution of the Markovian model of cellular growth and is related to the entropy
function [125] (see Appendix 9.4). In consequence, mathematical description of the
process of growth requires the Fokker–Planck equation. That equation reveals that
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growth of multicellular structure, such as cancer depends on two main forces, that is,
drift and diffusion. That relationship can be best seen in the Morse-like anharmonic
potential associatedwith the sigmoidal dynamics function. The potential function is a
solution of the special Schrödinger-like differential operator [47] (see Appendix 9.1).
It reveals that drift plays a dominant role in the first stage of growth. Diffusion drives
growth after the potential function reaches its minimum. At that stage, interactions of
cells withmicroenvironment play a decisive role for successful establishing of cancer
colony. In general, the entire class of models for local growth with reset originate
from the Fokker–Planck equation. Those models indicate that different probability
distribution functions lead to different growth rates. For example, the Gompertzian
probability distribution is associatedwith the exponential growth rate and theWeibull
one leads to the power lawgrowth rate that determines fractal dynamics in space–time
with the maximum entropy state at stationarity [126].

The last, but not least, the Feigenbaum diagram of those sigmoidal dynamics
represents a real domain of the Mandelbrot set. The Mandelbrot set forms in turn
an index into the Julia set. Each point of the Mandelbrot set defines some specific
Julia set by matching its constant c value. Since values of c chosen from within the
Mandelbrot set are connected while those from the outside of the Mandelbrot set are
disconnected, the corresponding Julia set is either connected or disconnected. It has
been proved that maximal entropy is a curvature measure of the Julia set [127]. Since
self-organization reaches its limit determined by the Fibonacci constant, biological
complex phenomena require dynamics with parameters at the edge of theMandelbrot
set or close to it. Those chaotic deterministic processes with fractal dimensions are
critical for morphogenesis or tumourigenesis. The latter one loses, however, fractal
structure while maximizing entropy during natural tumour evolution.

Features of time and space do not play a major role in biology. However, it is
interesting that both time and space, in which a nonlinear biological process with
sigmoidal dynamics, such as growth occurs are coupled each other and get fractal
dimensions [46, 47, 122, 128]. For example, Gompertzian dynamics couples time
and space through the linear function of their logarithms.Moreover, the spatial fractal
dimension is a function of both scalar time and the temporal fractal dimension [47]
(see Appendix 9.3). In particular, the relationship between sigmoidal dynamics and
the Feigenbaum diagram exemplifies how the interplay between regular and chaotic
processes influence the macroscopic integration of the system. Any alteration of that
coupling occurs throughmodification of intercellular interactions. A change of shape
of the entire complex tissue system, flow of information or dynamics of intra- and
intercellular processes end up in the modification of gene expression and vice versa
[129]. Those alterations are reflected by a change of the mean values of the global
spatial fractal dimensions.
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9 Appendix

Coupling of molecular events in the microscale quasi-deterministic cellular network
has several consequences. First, fractal dynamics, which is normally sensitive to
the initial conditions does not dominate at the macroscale level. Tissue growth is
very stable, predictable, and independent of the initial conditions. This is conditional
probability at themicroscale level, which is responsible for the emergence of a single,
simplistic, macroscopic dynamics of growth in that fractal space–time (Eqs. (1)–
(12)). Conditional probability works as a kind of a filter that eliminates the influence
of the chaotic processes at the microscale level on the macroscale level dynamics
leading to the Fokker–Planck equation (Eq. 9). The Markov process examplifies
the simpliest model of couplings between the preceding events and the succeeding
ones. The Gompertz function appears as a part of the solution in the relationship
with distribution of the conditional probability (Eq. 12). Second, both time and
space, in which such a supramolecular cellular dynamic system exists, possesses
fractal structure; a fact exemplified by Eqs. (19)–(23). Those equations indicate that
coupling of both time and space occurs through the appropriate dynamics of growth
described by the contraction-mapping. Third, entropy depends on the probability
distribution. Molecular coupling stabilizes the growing supramolecular system. The
entropy of the system of interacting molecules decreases as compared to the entropy
of the same set of non-interacting molecules (Eq. 27). Thus, the amount of missing
information about the system decreases. The system is more predictable after than
before coupling. Since entropy function remains related to dynamics of growth, it
is described by the function of time, and increases along time (Eq. 31). This is the
value of the entropy function which determines a capability of the supramolecular
system for coding or transfer of biologically relevant information (Eq. 33). Self-
organization of interacting supramolecular systems ends up in formation of structures
(patterns of growth) of higher order. That process is limited by the Fibonacci constant
(Eqs. (34)–(46)).

Space is defined here by a system of the geometrical co-ordinates. Those co-
ordinates build up a volume, in which the nonlinear dynamic process occurs. Time
is a parameter, which takes the sense of the evolutional co-ordinate.

9.1 The Chapman–Kolmogorov Approach

Division of eucaryotic cells occurs during a well-defined cell cycle. The cell cycle is
a series of molecular biological events that take place in the cell and lead to its repli-
cation. The cell grows, accumulating nutrients needed for mitosis and duplicating
its DNA during the interphase. The cell splits itself into two distinct cells during
the mitosis. Expression of two key classes of regulatory proteins, i.e., cyclins and
cyclin-dependent kinases, determine a cell’s progress through the cell cycle. Cell
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cycle checkpoints are used by cells to control the progress of the cell cycle. Check-
points allow verification of critical processes or repair of DNA damage at specific
points, such as theG1/S point. Cells cannot proceed to the next phase until checkpoint
requirements have been met. Cells that are fully differentiated enter a state of quies-
cence calledG0 phase, in which they cease division process for long periods of time.
Non-differentiated, actively proliferating cells can also enter G0 phase under certain
circumstances (reviewed in [130]). Differentiation is a non-Markovian process with
continuous time and long-range memory.

Without a loss of generality, proliferation of a special class of cells, such as
cancer stem cells in early tumourigenesis can be described as the Markov process
containing both a continuous and a discrete part. In general case, a joint probability
in such process can be expressed in terms of transition probabilities as in (1):

P(x, t + �t; z, t |x0, t0) = P(x, t + �t |z, t)P(z, t |x0, t0) (1)

Since

P(x) =
∫

P(x, y)dy (2)

i.e., continuous summing a joint probability P(x) over all values of the variables x
eliminates that variable, then using this principle and integrating Eq. (2) one gets the
Chapman–Kolmogorov equation (3):

P(x, t + �t) =
∫
O
P(x, t + �t |z, t)P(z, t |x0, t0)dz (3)

By definition of time derivative and using the normalization condition (4):

∫
O
P(z, t + �t |x, t) = 1 (4)

one gets (5):

∂P(x, t)

∂t
= lim

�t→0

1

�t
(P(x, t + �t) − P(x, t)) =

lim
�t→0

1

�t

∫
O
P(x, t + �t |z, t)P(z, t) − P(z, t + �t)P(x, t)dz

(5)

in which area of integrationO corresponds to at least two processes, i.e., a continuous
one in the infinitezimal surroundings of x and a discrete one outside that surroundings.
Expanding the integrand into a Taylor series one gets Eq. (6) with a component
reflecting the discrete part of the stochastic process
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∂P(x, t)

∂t
= −

∑
j

∂

∂x j

[
Uj (x, t)P(x, t)

] + 1

2

∑
jk

∂2

∂x j∂xk

[
Djk(x, t)P(x, t)

]

+
∫
O
[V (x |z, t)P(z, t) − V (z|x, t)P(x, t)dz] (6)

in which Uj(x, t) stands for potential, known also as a drift vector; a measure of the
internal interactions within dynamic cellular system andDjk(x) represents a diffusion
coefficient known also as a diffusion matrix; a measure of the external interactions
of dynamic cellular system. If drift equals zero, then Eq. (6) becomes a well-known
diffusion equation.

Potential U(x, t) determines evolution of dynamic cellular system towards a
stationary point in space and in time. In such point, all forces acting in dynamic
system are in equilibrium. It is both diffusion and interactionswithmicroenvironment
that pushes dynamic system to leave the minimum of potential. Otherwise, growth
of the colony of cancer cells would quit in that minimum. This maintains growth of
the colony until angiogenesis starts and provides impulses for novel dynamics [128].

9.2 The Markovian Model of Tumour Growth

Cell division in a population of rapidly proliferating cells, which do not differentiate,
occurs in a continuous manner with short-range memory, i.e., the conditional proba-
bility is determined by the most recent state, and does not depend on the initial state
(x0, t0). It can be described as a stochastic Markov process of probability transitions.
Then, Gompertzian dynamics, but not Verhulst dynamics, emerges in that simpliest
model of coupling between the succeeding stage and its predecessor [47, 122].

Let us consider a small cellular colony with less than 106 cancer cells growing
within a normal tissue environment. First, let those cells possess broad autonomy.
Let metabolic exchange through the gap junctions with normal surrounding cells and
with each other be veryweak or does not exist. Second, there is no blood vessels in the
colony. Feeding of cells occurs by diffusion. Third, cancer cells continue to proliferate
spontaneously owing to many molecular defects. Fourth, there is a minimal reaction
of the external tissue systems, such as the neuroimmunohormonal one or the internal
mechanisms, such as apoptosis. Finally, cancer cells belong to a single clone. Cells do
not undergo differentiation or do not express multiple transitional phenotypes. There
is a difference between the time-scales of molecular signalling, i.e., femtoseconds to
milliseconds, cellular growth, i.e., hours and cellular proliferation, i.e., days. Single
cells in the colony integrate molecular signals much faster than the colony expands
in space–time. There is no memory of the state at previous timepoints in that tissue
object. Then, it is possible to describe a growth trajectory under those assumptions
as a Markov chain of transitions for each timepoint by (7):
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P(x0, ..., xn) = P(x0, ...,n−1 )P
〈
xn|xn−1

〉 = P(x0)
n∏
j=1

P
〈
x j |x j−1

〉
(7)

in which P(x0, …, xn) is a probability that the growing cellular colony is at the
positions x0,…, xn at the timepoints 0,…n; P < xn|xn−1 > is a conditional probability
that between timepoints n – 1 and n the growth succeeds from the position xn−1 to
xn.

Since tissue growth occurs simulataneously in space and in time, it is particularly
interesting to introduce the probability P as a function of geometrical spatial variable
x and scalar time t. A speed of both processes is usually not large. So, the spatial
expansion of cellular system Δx = x – k in the time step Δt will also not be large.
A change of the probability P in the infinitesimal interval of time can be described
by differential Eq. (8), in which such change results from a difference between the
probabilities of the jump from the position k to x and the probabilities of return owing
to verification of critical processes or repair of DNA damage at the checkpoints:

∂P(x, t)

∂t
=

∑
k

P(k, t)P〈x |k〉 −
∑
k

P(x, t)P〈k, x〉 (8)

This leads to (9), which has a form of the Fokker–Planck equation; an integral
part of (6):

∂P(x, t)

∂t
= −

∑
j

∂

∂x j

[
Uj (x, t)P(x, t)

] + 1

2

∑
j,k

∂2

∂x j∂xk

[
Djk(x, t)P(x, t)

]
(9)

The stationary differential Markov process is specified by the probability
distribution P(M(t), t) given by (10) [125]:

P(M − M0, t) =
∫ ∞

−∞
dk

2π
e−ik(M−M0)e−βt |k|α (10)

in which t stands for scalar time, k is the Fourier variable, α, β > 0 are real, constant
factors, and dM(t) stands for the fluctuations.

It is worth to notice that there is a key relationship between such the conditional
probability density P(v, t) and the Gompertz function. Indeed, the conditional prob-
ability density P(v, t) can be expressed in the form of the Fourier transform taken
with respect to the variable (v – v0e−λt) containing the Gompertz function f(t) (11):

P(v, t |v0) =
∞∫

−∞

dk

2π

(
e(−ik

∫ M(t)
0 e−λ(t−τ)dM(τ ))

)
f (t)|k|

α

(11)
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in which v(t) is the dynamical variable, i.e., the velocity of the division process and
f(t) stands for the Gompertz function given by (12):

f (t) = ea(1−e−bt ) (12)

9.3 Fractal Time–Space

Cells grow both in space and in time [46, 47, 128]. Let us assume that both variables,
the spatial x and the temporal t, are coupled each other in a linear manner as in (13)
into a single, complex spatio-temporal variable:

θ = μx + t (13)

Then, the appropriate equation relating the function of probability distribution
P(x, t) and the potential function U(x, t) is given by (14):

− 1

D

∂2P(θ)

∂θ2
+ D

4
P(θ) +U (θ)P(θ) = 0 (14)

Indeed, let us calculate the appropriate derivatives of the Eq. (14), i.e., d/dt, d/dx,
and d2/dx2. Let put them into the well-known equation of diffusion. We should get
(15) with a single spatio-temporal variable:

(
∂

∂θ
− Dμ2 ∂2

∂θ2
−U (θ)

)
(θ) = 0 (15)

For μ = 1/D and for

0 < (θ) = Pe− θ
2 < 1 (16)

we can develop (15) into (17):

− 1

D

∂

∂θ

(
∂

∂θ
(θ)

)
+ ∂

∂θ
(θ) +U (θ)(θ) = 0 (17)

and finally, by calculating the appropriate complex derivatives arrive to (14).
The Gompertz function and the anharmonic Morse-like potential U(θ ) are related
each other through the one-dimensional differential operator (Eq. 18), in which a
represents a depth of the potential well, b is a range parameter [47, 128].
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(
−1

b

∂2

∂t2
+

(
ae−bt − 1

2

)2

− 1

4

)
f (t) = 0 (18)

This linear coupling of variables can be defined as a function with both spatial
and temporal fractal dimension. It is known from experimental data that the number
of cells (or their volume) changes in time t according to the Gompertzian function
f(t) (12). A volume of the spheroid V is given by (19):

f (t) = V = nVk (19)

in which Vk is a mean volume of a single cell, n stands for a number of cells in the
spheroid.

From (12) to (19), and from the fact that the Gompertzian function is a fractal,
(e.g., it can be fitted with the function f(t)= atb with very high accuracy, a coefficient
of nonlinear regression R >> 0.95 for n 3 100 pairs of co-ordinates), in which a stands
for a scaling coefficient, bt is a temporal fractal dimension, (i.e., any real number), t
is scalar time, we get (20):

V = Vk F(t0)e
a(1−e−bt ) = Vk f (t0)at

bt = V0at
bt (20)

The volume V of the spheroid can also be expressed as a function of scalar
geometrical variable x (i.e., a radius of a family of the concentric spheres covering
the entire spheroid) by (21):

V = a1x
bs (21)

in which a1 stands for a scaling coefficient, bs is a spatial fractal dimension after
scalar time t1, x is a scalar, geometrical variable, which locates an effect in space.

If the initial value of the temporal fractal dimension bt0 for cellular population
expanding in space is different from the fractal dimension bt during the other stages
of the process (t = tn), then, from (20) to (21), we get (22):

V = a1x
bs = V0at

bt = a0x
bs0 atbt (22)

in which a, a0, and a1 stand for the scaling coefficients, bt is the temporal fractal
dimension, bs0 and bs are the spatial fractal dimensions after time t0 and t, respec-
tively, x is a geometrical variable. Hence, we get (23) that relates space and time and
defines the geometrical variable x as a function of the scalar time t.

ln x = 1

bs − bs0
ln

a0a

a1
+ bt

bs − bs0
ln t (23)
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in which t stands for scalar time, x is geometrical variable, bs is the spatial fractal
dimension, bt is the temporal fractal dimension [46].

9.4 Entropy and Sigmoidal Dynamics

It is worth to notice that the proposed Markov model implies at least three important
consequences. First, entropy, (i.e. missing information)HM of such theMarkov chain
of the coupled molecular reactions defined by (1) or (7) is always lower than entropy
of the set of random and independent biochemical reactions HR. Indeed, entropy is
defined as the expected value of missing information Hp:

HP = H(X) = −
N∑
j=1

p j log p j (24)

in which p = (p1, p2, … pj), j ε N, is a probability density function over a generic
variable X, and if pj = 0, then Hp = 0, log is a natural logarithm, providing a unit
of measure. Hence, the conditional entropy H(Xk|Yk-1) of the Xk reaction stands for
which conditional information is determined when the state Yk-1 = i, is given by
(25):

H(Xk |Yk−1 = i) = −
∑
j

pi j log pi j (25)

The conditional entropy of the Markov chain HC is given by (26):

HC = H(Xk |Xk−1 ) = −
∑
i

pi
∑
j

pi j log pi j (26)

Finally, we get (27) for the n first steps of the Markov chain X1, X2, …, Xn from
(24) to (26), the principle of additivity of independent random events, and from the
analog principle for the conditional probabilities (compare [131]):

HM =H(X1) +
k=n∑
k=2

H〈Xk | Xk−1〉 = −
∑

p j log p j + (n − 1)HC < nHP

= −
∑
j

p j log p j = HR (27)

Second, Gompertzian dynamics of growth can be normalized, i.e., growth
dynamics of various tissue systems can be described by a single normalizedGompertz
function f N (t) (28). In fact, this normalized Gompertz function is both a dynamics
function f N (t) and a probability function pN(t) (see for details [47]).
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fN (t) = e−e(−bt) = pN (t) (28)

Consider a coupling of probability function pN(t) and antiprobability function
–log pN(t), in which r = b (29):

dpN (t)

dt
= −rpN (t) log pN (t) (29)

This equation defines a relationship between entropy H(t) and the normalized
Gompertzian dynamics of growth pN(t) (30) [132]:

pN (t) =
∫

∂pN (t)

∂t
dt = −r

∫
pN (t) log pN (t)dt = r H(t) (30)

Finally, from (29) to (30) we get (31):

H(t)Gompertz = 1

b
e−e(−bt)

(31)

According to Shannon theorem, of all the continuous distribution densities
for which the standard deviation exists and is fixed, the Gaussian, (i.e. normal)
distribution has the maximum value of entropy H (32) [133]:

HGauss = −
∫ ∞

−∞
e− t2

2σ2√
2πσ 2

log
e− t2

2σ2√
2πσ 2

dt = 1

2
log(2πeσ 2) (32)

In the case of growing supramolecular cellular system, entropy or missing infor-
mation H(t) is a function of time related with dynamic function of growth in fractal
space–time. For b = 1 both the normalized Gompertz function (28) and the entropy
function (31) overlap each other. However, for most cellular systems b << 1.

Third, there is a relationship between the number of elements in theMarkov chain
and entropy. IfMp(n) stands for several Markov chains of the length n with the total
probability p, 0 < p < 1, there exists the same limit for each probability p that equals
entropy H (33) [134].

lim
n→∞

logMp(n)

n
= H (33)

If a total number of states of the supramolecular cellular system equals 2 m, then
the number of molecular reactions interconnected in the Markov chains of the length
n is 2 nm. It is clear from (33) that only 2 nH Markov chains with probability 1 – ε,
ε > 0 will be involved in transfer of biologically relevant information.
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9.5 The Fibonacci Constant and Self-Organization of Cells

Let us consider density ρ of some geometric objects in the classic, Euclidean space
with integer dimension w. We define it by the following equation

ρ = N/V = N1r
−w (34)

in which N1 is the number of objects in the given volume V of a sphere, r is a radius
of the unit sphere, w is geometric dimension of the space.

Let us define the corresponding density ρ f of the same objects in space with the
spatial fractal dimension b.

ρb = Nb/Vb = Nbr
−b (35)

After logarithmic transformation,

ln N1/ρ = w ln r (36)

and,

ln Nb/ρb = b ln r (37)

Hence,

w/b = (ln N1/ρ)/ (ln Nb/ρb) (38)

and,

Nb/ρb = (N1/ρ)b/w (39)

The quotient N1/ρ is a measure of object expansion into space volume, (e.g.,
cells). Let us mark this quotient by V, and the corresponding expression for fractal
space by Vb.

Then,

Vb = V b/w (40)

We define the relative volume by the equation

κ = Vb/V = V σ (41)

in which
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σ(b) = (b/w) − 1 (42)

is a relative differential coefficient of object expansion into space and a function of
the fractal dimension. It possesses the following features: a. If the dynamic process
or objects occupy the entire Euclidean space, then b = w, σ = 0, and κ = 1. In
other words, if the classic space is completely occupied by geometric objects, there
is no free region available for expansion as in the case of neutral gas, and the relative
differential coefficient of object expansion into space equals zero; b. If the process
or objects possesses fractal dimension, then b < w, σ < 0, and κ < 1. Thus, the classic
Euclidean space is not occupied completely, and there is some free subspace; a fact
reflected by a value of the coefficient σ (b) lower than zero, and value of relative
volume lower than one [44].

Let us consider a golden rectangle of the length b and the width w.
If b < w, then it holds Eq. 1:

b

w
= w − b

b
=

(w

b

)
− 1 (43)

Hence, we get Eq. 44:

(w

b

)2 −
(w

b

)
− 1 = 0 (44)

where

(w

b

)
=

(
1
b
w

)
= 1 + √

5

2
= 1.618 = � (45)

Hence
(
b

w

)
= 1

1.618
= 0.618 = 1

�
(46)

where � stands for the Fibonacci constant; the irrational number and the limit of
self-organization in dynamic systems with fractal dimension [7]. Then, the global
capacity fractal dimension has a value of 1.236 and the corresponding coefficient of
cellular expansion –0.382.
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Abstract Current clinical decision-making in oncology relies on averages of large
patient populations to both assess tumour status and treatment outcomes. How-
ever, cancers exhibit an inherent evolving heterogeneity that requires an individual
approach based on rigorous and precise predictions of cancer growth and treatment
response. To this end, we advocate the use of quantitative in vivo imaging data to cal-
ibrate mathematical models for the personalized forecasting of tumour development.
In this chapter, we summarize the main data types available from both common and
emerging in vivo medical imaging technologies, and how these data can be used to
obtain patient-specific parameters for common mathematical models of cancer. We
then outline computationalmethods designed to solve thesemodels, thereby enabling
their use for producing personalized tumour forecasts in silico, which, ultimately,
can be used to not only predict response, but also optimize treatment. Finally, we
discuss the main barriers to making the above paradigm a clinical reality.
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1 Introduction to Tumour Forecasting

Cancers are highly heterogeneous diseases supported by diverse biological mech-
anisms occurring, interacting, and evolving at multiple spatial and temporal scales
[74]. These phenomena span from the phenotypic and genotypic cellular diversity
within the tumour to the regional variations of the tumour microenvironment (e.g.,
vasculature and extracellular matrix), which can result in epigenetic changes in can-
cer cells or gradients in nutrient availability. Hence, the heterogeneous nature of
cancer makes each patient’s case unique. However, established, standard-of-care
methods determine diagnosis, stage, treatment regimen, and response to treatment
according to historical population averages. This paradigm only enables the obser-
vation of cancer evolution and the outcome of treatment at fixed time points, offers
a limited individualization of disease management, and largely ignores the intrin-
sic heterogeneity of cancers, which may result in treatment failure [45, 117]. Thus,
a new clinical paradigm that effectively integrates the spatiotemporal dynamics of
tumour growth and treatment response to identify effective clinical strategies for
each patient is desperately needed. We posit that mathematical modeling informed
by clinically-relevant data can provide the framework to address this challenge [90,
122, 123].

Computational oncology is a rapidly growing field that attempts to leverage math-
ematical models of the key biological mechanisms that characterize cancer to predict
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how a patient’s tumour will grow and respond to treatment [90, 122, 123]. Computer
simulations of these models provide personalized tumour forecasts, designed to ulti-
mately assist oncologists in clinical decision-making. For example, tumour forecasts
may predict disease progression, thereby providing much needed guidance on the
optimal intervention strategy early in the course of therapy. Indeed, we hypothesize
that treatment optimization can be achieved through the development and rigorous
validation of practicalmathematicalmodels and efficient computationalmethods that
can provide accurate personalized predictions of cancer development and treatment
response.

A fundamental challenge in computational oncology is accomplishing the patient-
specific parameterization of the biological mechanisms involved in cancer models
(e.g., tumour cell mobility, proliferation and death rates, or therapy efficacy). In gen-
eral, these parameters are extremely difficult to measure in vivo in human tumours.
However, medical imagingmay provide a viable source of data for this purpose. Clin-
ical oncology currently focuses on anatomical imaging for the diagnosis, treatment,
monitoring, and assessment of therapeutic response of solid tumours [111] (e.g.,
measuring tumour size, identifying invasion into adjacent structures, and detect-
ing metastasis). Unfortunately, anatomical imaging frequently fails to capture the
heterogeneous underlying biology within tumours. Alternatively, quantitative imag-
ing techniques enable the measurement of clinically-relevant biological features of
tumours, such as tumour cell density, blood volume fraction, and perfusion [42].
Thus, these quantitative imaging techniques can be used to assess the spatiotemporal
evolution of a cancer’s heterogeneous architecture, morphology, growth dynamics,
and response to therapy, thereby providing the necessary data to parameterize pre-
dictive models of tumour growth and treatment [41, 122].

In this chapter, we will discuss how quantitative imaging can be used to enable
tumour forecasting and optimization of therapeutic response. We will begin by iden-
tifying relevant quantitative imaging data types and how they are incorporated into
existing image-based models of cancer growth and treatment. We will also provide
insights into the technical aspects of numerical implementation, model calibration,
and model selection. Then, we will introduce a promising framework to optimize
patient treatment plans.Wewill conclude with a discussion of the barriers to success-
fully translating image-based computational tumour forecasting into patient care.

2 Relevant Data Types from Medical Imaging

While measuring tumour size throughout therapy is central in oncological response
assessments [111], the dynamics of tumour size changes are often temporally down-
stream of intratumoral biological and physiological responses to therapy. Magnetic
resonance imaging (MRI) and positron emission tomography (PET) provide non-
destructive and non-invasive 3D quantitative measurements of biological properties
within and around the tumour. Hence, the acquisition of these imaging data at sev-
eral timepoints is well-suited to initialize and parameterize mathematical models
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of tumour growth and treatment response. In this section, we will briefly introduce
the relevant MRI and PET measurements that have been commonly used in com-
putational oncology (see Fig. 1 for representative images of these techniques). For
a detailed review of advanced MRI and PET techniques in oncology, the reader is
respectively referred to [28, 42].

2.1 Diffusion Weighted Magnetic Resonance Imaging

Diffusion weighted (DW-) MRI is an established technique that has been applied in
oncology as a noninvasive assessment of cellularity changes during treatment [84].
DW-MRI is sensitive to the diffusion of water molecules within tissue. In a DW-MRI
experiment, water molecules are first tagged based on their spatial location. Then,
after a short delay of typically 20–60 ms, a second spatial-encoded tag is applied.
During this delay, water molecules move throughout the tissue due to diffusion. If
the water molecules do not travel far, the first spatial-encoded tag can be largely
removed by the second spatial-encoded tag and there is no loss (or gain) in signal
intensity. However, if the water molecules move throughout the domain, there is
a net-difference between the two spatial-encoded tags resulting in a decrease in
signal intensity. Thus, the signal intensities within each voxel in the resulting image
are “weighted” based on water diffusion. In practice, several diffusion weighted
experiments are performed with different settings (e.g., varied diffusion-sensitizing
gradient amplitudes of the magnetic field) to spatially quantify the apparent diffusion
coefficient (ADC) of water. However, water diffusion in tissue is heavily restricted
by cells, macromolecules, and extracellular structures. Hence, these physical barriers
reduce the measured ADC . This phenomenon has been observed in several studies
showing an inverse correlation between ADC and cellularity [4, 8, 55]. Following
these reports’ results, ADC can be used to estimate cellularity using:

N (x, t) = θ

(
ADCw − ADC(x, t)
ADCw − ADCmin

)
(1)

where θ represents the maximum tumour cell carrying capacity for an imaging voxel
(determined by the voxel dimensions and assumptions in cell geometry and packing
density), ADCw is the ADC of free water at 37◦C (i.e., 2.5 · 10−3 mm2/s; [116]),
ADC(x, t) is the ADC value at a given 3D position x and time t , and ADCmin is the
minimum ADC value observed within the tumour. Figure1 displays a representa-
tive ADC map from breast and brain cancer. While there are significant correlations
between cellularity and the measured ADC , cellularity is not the sole factor in
dynamic changes in ADC . Changes in cell size, cell permeability, and tissue tortu-
osity may alter the measured ADC [84]. Other diffusion-based imaging approaches
can also report on cell size [55] and diffusion anisotropy [105]. The reader is referred
to [58] for a technical review of DW-MRI and its applications in oncology.
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2.2 Dynamic Contrast-Enhanced Magnetic Resonance
Imaging

Dynamic contrast-enhanced (DCE-) MRI consists of the rapid acquisition of a series
of heavily T1-weighted images before, during, and after the injection of a T1 altering-
contrast agent (typically a Gadolinium chelate) to probe vascular properties in tissue
[121]. Using a pre-contrast T1 map, any post-contrast T1 changes can be related to the
concentration of the contrast agent. Thus, each image voxel yields a signal intensity
time course that can be related to the concentration of the contrast agent within
that voxel. The subtraction images obtained from pre- and post-contrast enhanced
images are often used to identify tumour regions, which usually show areas of rapid
and intense enhancement due to their higher andmore permeable vascularity than the
neighboring healthy tissue. The dynamics of signal intensity are commonly analyzed
with a two-compartment pharmacokinetic model describing the extravasation of the
contrast agent from the plasma space to the tissue space [121]. The solution to this
model is given by

Ct (x, t) = K trans(x)
∫ t

0
Cp(u)e− Ktrans (x)

ve (x) (t−u)du + vp(x)Cp(t), (2)

where Ct (x, t) is the concentration of the contrast agent in tissue at position x and
time t , Cp(t) is the concentration of the contrast agent in the plasma space at time t ,
K trans(x) is the volume transfer constant from the plasma to tissue space, ve(x) is the
extravascular-extracellular volume fraction, and vp(x) is the plasma volume fraction.
Importantly, Ct , K trans , ve, and vp are all voxel-specific and are related to structural
(cell density) and physiological (vessel permeability and perfusion) properties.Cp(t)
can be measured directly for individual subjects from a large artery within the image
field of view or can be replacedwith a population-based estimate [65]. Figure1 shows
K trans , ve, and vp maps from a preclinical and a clinical study.

2.3 Molecular Imaging with Positron Emission Tomography

PET relies on the injection of a radiopharmaceutical (or PET tracer) to gener-
ate image contrast. As there is no endogenous signal, PET has excellent sen-
sitivity to detect and localize the distribution of radiopharmaceuticals through-
out the body. Several radiopharmaceuticals have been developed to probe tumour
properties, such as glucose metabolism (via 18F-fludeoxyglucose or 18FDG),
hypoxia (via 18F-fluoromisonidazole or 18F-MISO), cellular proliferation (via 18F-
Flurodeoxythymidine [119]), and receptor status (e.g., 64Cu-diethylenetriaminepen-
taacetic acid Trastuzumab for HER2+ positive cancers [79]).Wewill primarily focus
on 18FDG and 18F-MISO as they are well-established in oncology, but the analysis
techniques are similar for other PET tracers.
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ADC Ktrans ve 18FDG-PET SUV

(a) Clinical breast cancer imaging data

ADC Ktrans ve

(b) Preclinical glioblastoma imaging data

vp

Fig. 1 Representative quantitative imaging measurements from clinical and preclinical settings. a
Parameter maps extracted fromDW-MRI, DCE-MRI, and 18FDG-PET through the central slice of a
breast tumour (allMR data are from the same patient, PET data are from a different individual). DW-
MRI provides estimates of ADC , while DCE-MRI yields estimates of K trans and ve. The 18FDG-
PET SUV map shows increased glucose uptake within the breast tumour relative to surrounding
tissue. b Parameter maps acquired in a preclinical murine model of glioblastoma from DW-MRI
(ADC) and DCE-MRI (K trans , ve, and vp)

In an 18FDG-PET study, a single image is acquired following the injection of the
glucose analogue 18FDG,which cells uptake in a similar fashion to glucose.However,
once internalized, 18FDG is phosphorylated and trapped intracellularly. The resulting
image intensities are proportional to the concentration of 18FDG within each voxel.
PET tracer uptake can be quantified using the standardized uptake value (SUV ),
which is the ratio of the concentration of 18FDG radioactivity in tumour tissue to the
total injected dose and divided by the patient’s body weight. In oncology studies,
contrast between tissues is typically generated due to variations in glucose uptake
due to an overexpression of glucose transporters and hexokinase activity in tumour
cells relative to healthy cells [14]. This difference in 18FDG uptake is also shown in
Fig. 1.

Likewise, in 18F-MISO PET a single image is also acquired following the injec-
tion of 18F-MISO, which is a radiopharmaceutical that produces images sensitive to
oxygen concentration in tissue [88]. After 18F-MISO is internalized by cells, it is
reduced to produce a radical anion. In normoxic or oxygen-rich environments, oxy-
gen accepts the electron from the radical anion enabling 18F-MISO to leave the cell.
Conversely, in hypoxic or oxygen-poor environments, the radical anion of 18F-MISO
binds to other intracellular macromolecules trapping it within the cell. Thus, the con-
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centration of 18F-MISO and the produced PET signal within a voxel are inversely
proportional to the oxygen concentration. 18F-MISO uptake is quantified using the
standardized uptake value (SUV ) or the oxygen enhancement ratio (OER), which
is the ratio of signal intensity in tumour relative to blood.

3 Image-Based Mathematical Models of Cancer

Medical imaging provides an excellent way to develop, calibrate, and validate per-
sonalized mathematical models of cancer evolution and treatment response [122]
for three main reasons. First, medical imaging enables the in vivo measurement of
relevant biological properties in tumour and healthy tissues, which would other-
wise be impractical or impossible to measure in individual patients. Second, medical
imaging data can be obtained frequently throughout the clinical management of the
patient’s tumour, which enables model calibration. Third, medical imaging data are
acquired on a regular voxel grid, which facilitates their computational processing. In
this section, we discuss common image-based models of tumour growth and treat-
ment response that leverage the quantitative imaging data types introduced in Sect. 2.
Figure2 shows simulation outputs of many of the models discussed in this section.

3.1 Baseline Tumour Growth Models

In mathematical oncology [90], the logistic growth model is one of the simplest and
most common approaches to describe changes in tumour volume [11] or cell number
[6] over time. It is a flexible model that can be adapted to in vitro and in vivo data
alike. The formulation of the logistic growth model over a certain tissue region of
interest follows the partial differential equation (PDE):

∂N (x, t)
∂t

= k(x)N (x, t)
(
1 − N (x, t)

θ

)
, (3)

where N (x, t) is the tumour cell density at position x and time t , k(x) is a spatially-
varying net proliferation rate, and θ is the carrying capacity. The image-informed
applications of this model have typically been posed voxelwise, such that N (x, t)
is redefined as the number of cancer cells within the voxel in position x at time
t . Atuegwu et al. [6] used this approach to predict tumour growth in breast cancer
patients receiving neoadjuvant chemotherapy. First, they used Eq. (1) to estimate
N (x, t) from ADC maps obtained via DW-MRI. The estimates of N at baseline
(pre-treatment) and after one cycle of therapy were used to determine k(x). Then,
Atuegwu et al. used their model equipped with the resulting k(x) to predict N at the
conclusion of therapy. They observed a strong correlation between the predictions
and data estimates of N over the entire tumour (Pearson correlation coefficient, PCC,
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(b) Preclinical glioblastoma setting

(a) Clinical breast cancer setting

Initial data Final data Logistic

Reaction-diffusion Drug-informedMechanically-coupled

0

1
N(x,t)/θ

Initial data Final data Logistic

Reaction-diffusion Vasculature coupledMechanically-coupled

0

1
N(x,t)/θ

Fig. 2 Differences between image-based models in clinical and preclinical settings. a Example
from a clinical breast cancer model, where measured initial, measured final, and model forecasts
of the final distributions of tumour cell density are shown. The logistic model fails to capture the
expansion of the tumour into nearby tissue, while the remaining models incorporating a diffusion
term perform better. b Example from a preclinical model of glioblastoma, where measured initial,
measured final, andmodel predicted final distributions of tumour cell density are shown. The logistic
model also fails to predict the expansion, but does predict an intratumoral low cell density area

of 0.95) and for individual voxels (PCC=0.70). Figure2 shows an example of this
approach for a clinical breast cancer model and a preclinical glioblastoma model.

However, the logistic growth model fails to capture the potential movement of
cells that may occur over time. To overcome this limitation, the logistic growthmodel
can be extended to a reaction-diffusion model given by the PDE
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∂N (x, t)
∂t

= ∇ · (D∇N (x, t)) + k(x)N (x, t)
(
1 − N (x, t)

θ

)
, (4)

where the first term on the right is a diffusion term describing the movement of
tumour cells with a constant diffusion coefficient D, while the second term on the
right is a reaction term represented by the logistic growth of cancer cells.

Equation (4) is well established in computational oncology [35, 37, 50, 89, 91,
106, 115, 118]. The work of Swanson et al. [7] in high grade gliomas showed one
of its first image-informed applications, using anatomical MRI data to provide seg-
mentation of tumour boundaries and fixed cell-density counts in enhancing and non-
enhancing disease. The spatiotemporal changes in tumour boundaries were used to
estimate a constant tumour-specific proliferation rate k and tissue-specific D, which
were then used to predict patient survival. This approach has had promising results
in relating growth kinetics to patient outcomes [7, 81]. However, it does not describe
the intratumoral heterogeneity of cell density. Hormuth et al. [39] addressed this
limitation by estimating N from ADC maps obtained via DW-MRI using Eq. (1)
in a murine model of glioma. In this study, animals were imaged up to seven times
over ten days. The first three imaging datasets were used to initialize N as well
as to calibrate k(x) and D. In a separate calibration, a spatially-constant k (i.e.,
tumour specific) was also calibrated along with D. The calibrated model was then
used to predict N (x, t) at the remaining imaging visits. While both calibration sce-
narios overestimated future tumour growth, the predictions with a spatially-varying
k(x) rendered lower tumour volume errors, higher Dice correlation coefficients, and
higher concordance correlation coefficients (CCC; all p < 0.05). These results high-
light the importance of accounting for the intratumoral heterogeneous dynamics to
obtain accurate tumour forecasts and the promising potential of quantitative imaging
to provide the required data for this purpose. Other studies have used alternative
quantitative imaging measures to inform the reaction-diffusion model in Eq. (4);
examples include incorporating anisotropic diffusion via diffusion tensor imaging
(DTI, a form of DW-MRI [105]) [53, 106], using cell density measurements via
contrast-enhanced computed tomography [118], and estimating cell phenotypes via
DCE-MRI [91].

Alternatively,phase-fieldmodels are another commonparadigm todescribe tumour
growth [1, 66, 70, 71, 120]. The phase field φ(x, t) identifies healthy tissue (e.g.,
φ = 0) from tumour tissue (e.g., φ = 1), showing a smooth and thin transition
between either region. Phase-field models usually focus on the dynamics of tumour
morphology through the evolution of the healthy-tumour interface, which is implic-
itly defined by a phase-field isosurface. These models rely on more complex physics
than those described above, usually requiring the definition of an energy functional
that drives tumour growth [31, 66, 67]. Phase-fieldmodeling has beennotably applied
in brain tumours [1, 66], prostate cancer [70, 71], and tumour angiogenesis [113,
120]. However, there is a paucity of studies using quantitative imaging data to inform
phase-fieldmodels. This is partly due to their more complex dynamics, which usually
requires a higher number of parameters, larger and richer patient-specific datasets,
more advanced numerical methods, and more computational resources.
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We identified two illustrative works that use imaging measurements to initialize,
calibrate, and/or validate phase-field models of cancer. Lima et al. [66, 67] have
been investigating model selection to identify the best formulation of murine glioma
growth according to longitudinal anatomical MRI tumour measurements, includ-
ing an array of phase-field models also accounting for the local tumour-induced
mechanical stress field (see Sect. 3.2). Their work shows that phase-field models
are plausible formulations of tumour growth and in [66] they emerge as the best
models indeed. Additionally, Agosti et al. [1] developed a phase-field model of
glioblastomamultiforme that uses quantitative DTI data to define anisotropic tumour
cell motility and nutrient diffusion. Their work focuses on the prediction of tumour
recurrence after surgical resection and subsequent radiotherapy. By accounting for
post-surgery changes in tissue architecture, they obtained a Jaccard index of 0.71
post-radiotherapy.

3.2 Mechanically-Coupled Models

Local mechanical tissue properties and tumour-induced mechanical stresses are
known to affect cancer growth dynamics [34, 47, 80]. For example, Helmlinger
et al. [34] observed that tumour spheroid growth in vitro was increasingly inhibited
as the substrate matrix stiffness was augmented. Uncontrolled tumour growth can
also severely deform healthy tissue structures, thereby adversely impacting patient
health and quality of life. Therefore, several mathematical models of cancer couple
tumour growth dynamics with local mechanical equilibrium [18, 35, 40, 50, 69, 71,
115].

A common approach [115] is to dampen the diffusion coefficient in Eq. (4) with
a function of local tissue stress:

D(x, t) = D0e
−γvσvm (x,t), (5)

where D(x, t) is now a spatially and temporally varying diffusion coefficient, D0

is the tumour cell diffusion coefficient in the absence of stress, γv is an empirical
coupling constant, and σvm(x, t) is the von Mises stress. Here, σvm(x, t) is used to
summarize the local mechanical stress field, which is calculated assuming quasistatic
linear elastic equilibrium with tissue-specific mechanical properties:

∇ · (
λ (∇ · u) I + μ

(∇u + ∇uT
)) − γN∇N = 0, (6)

where λ andμ are the Lamé coefficients (related to the tissue’s Youngmodulus E and
Poisson’s ratio ν), u is the displacement field due to tumour cell growth, and γN is
another empirical coupling constant. In Eq. (5), the first termon the left-hand side rep-
resents the linear elastic tissue response to the local tumour-induced forces described
by the second term on the left. Weis et al. [115] used tumour cell number estimates
from DW-MRI data using Eq. (1) to initialize and calibrate a mechanically-coupled
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reaction-diffusion model of breast cancer growth during neoadjuvant chemotherapy
consisting of Eqs. (4)–(6). Their work shows that the mechanically-coupled model
rendered more accurate predictions of N (PCC=0.85) than the baseline reaction-
diffusionmodel (PCC= −0.29). Several subsequent studies have also used Eqs. (5)–
(6) to couple mechanics to breast and brain tumour dynamics [40, 50], as shown in
Fig. 2. Lima et al. further considered a mechanical inhibition of tumour proliferation
following a similar formulation to Eq. (5) [66, 67]. Moreover, the prostate cancer
model of Lorenzo et al. [71] extended Eq. (5) to combine the measure of mechanical
tissue distortion via σvm with hydrostatic stress, which is not captured by σvm and
contributes to a more precise description of intratumoral stress.

Other mathematical models couple local mechanics to tumour growth dynamics
through a reaction-advection-diffusion equation [35, 69] in which the tumour cell
drift velocity is related to the displacement field, thereby explicitly simulating the
displacement of cells due tomechanical deformation. Additionally,Wong et al. [118]
leveraged a hyperelastic biomechanical model. Interestingly, in this study tumour
dynamics was described using a reaction-diffusion model in which the proliferation
rate k(x) was calibrated with 18FDG-PET SUV data, as follows:

k(x) = αSUV (x) − βc(x, t)
c(x, t) (1 − c(x, t))

, (7)

where SUV (x) is the standardized uptake value at position x, α and β are unknown
constants to be calibrated, and c(x, t) is the cell volume fraction estimated from
computed tomography at position x and time t .

3.3 Vasculature-Coupled Models

Co-opting of local vasculature and recruitment of new blood vessels via angiogenesis
is a critical component of cancer development that is needed to support growth past
2–3mm3 in size [30, 46]. Thus, understanding the evolving distribution and function
of the tumour-supporting vasculature is crucial to accurately model tumour growth
and treatment response. There is an extensive literature on mathematical models
of tumour angiogenesis [113]. However, very few describe this phenomenon at the
imaging/tissue scale [37, 109] or personalize it for individual tumours.

Hormuth et al. [37] developed a murine model of glioma growth coupled with
angiogenesis that was initialized and calibrated using tumour cell number estimates
obtained from DW-MRI via Eq. (1) and estimates of the blood volume fraction
extracted from DCE-MRI. The spatiotemporal evolution of tumour cells and vascu-
lature was described using two coupled reaction-diffusion equations. In this model,
vasculature influenced the direction of tumour growth and was coupled to the car-
rying capacity. Similarly, tumour cells also influenced the direction of vasculature
evolution. The animals were imaged up to seven times over a period of ten days.
Model parameters were calibrated using the first three imaging datasets, and then
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used in a forward evaluation of the model to predict tumour growth at the remain-
ing imaging time points. The authors observed that their model resulted in less than
10.3% error in tumour volume predictions and less than 9.4% error at the voxel-
level for all prediction time points. Figure2 shows an example of this approach in a
pre-clinical model of glioblastoma.

Roque et al. [91] developed a vasculature-informed preclinical reaction-diffusion
model of breast cancer accounting for normoxic, hypoxic, and necrotic cancer sub-
populations along with nutrient dynamics, which regulates normoxic cell prolifer-
ation as well as the normoxic-hypoxic and hypoxic-necrotic transfer rates. While
not explicitly evolving the tumour-supporting vascular network, the authors used
vasculature-derived parameters obtained from DCE-MRI (e.g., blood flow, mean
transit time, and maximum enhancement) to initialize all model variables and cal-
ibrate key parameters. While the study results suggested that further model devel-
opment is needed to capture individual differences in tumour growth, this work is a
unique effort to identify tumour subpopulations using quantitative imaging data.

3.4 Radiotherapy

Radiotherapy is a common treatment for many cancers [77]. However, intratumoral
heterogeneity may result in significant variations in treatment response, which may
ultimately lead to poor therapeutic outcomes [9, 30]. Image-based modeling could
prove valuable to predict the response to radiotherapy and hence optimize treatment
protocols for individual patients. To this end, several studies have investigated incor-
porating imaging measures from PET [89] and MRI [33, 36, 38, 67] into reaction-
diffusion based models to characterize patient response to radiotherapy. The usual
approach to model radiotherapy effects is by instantaneously killing a fraction of
tumour cells at treatment times [33, 36, 38, 67, 89]. This strategy may be further
combinedwith a transient or permanent reduction in tumour cell proliferation [36, 38,
67]. These radiotherapy effects are usually modeled as a function of the prescribed
dose, which may also account for local tumour cell and vascular densities.

Rockne et al. [89] adapted the glioblastomamodel by Swanson et al. [7] to explic-
itly incorporate cell death due to radiotherapy based on 18F-MISO PET data. Oxygen
concentration and the degree of hypoxia in tumours are known to significantly impact
response to radiotherapy [112]. Thus, Rockne et al. used 18F-MISO PET to assess
the level of hypoxia by calculating the OER, which is then used along with the usual
linear quadratic model of radiotherapy response [22] to calculate cell survival, S, as
follows:

S = exp

(
−α (OER(x))

(
d + d2

α/β (OER(x))

))
, (8)

where d is the prescribed radiation dose while α (OER(x)) and α/β (OER(x)) are
radiosensitivity parameters as a function of the OER at position x. Rockne et al.
observed that predictions by a model featuring Eq. (8) outperformed those obtained
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with a model with uniform radiosensitivity (1.1% vs 14.6% error in tumour volume,
respectively).

3.5 Chemotherapy

Chemotherapy is another common treatment for most cancers [77]. Unlike the local-
ized nature of radiation therapy, chemotherapy relies on drugs that are administered
systemically throughout the body. While chemotherapy has traditionally leveraged
cytotoxic drugs (i.e., promoting cell death), recent approaches also use drugs tar-
geting specific cancer cell markers to decrease proliferation or triggering particular
immune responses. Similar to radiation therapy, challenges for modeling chemother-
apies stem from quantifying howmuch drug is distributed in the tumour (and healthy
tissues) and patient-specific treatment efficacy. Multiple mathematical models have
been proposed to describe the effect of chemotherapy on tumour growth [107, 110,
124], but only a few are informed by quantitative imaging data.

In particular, the contribution by Jarrett et al. [50] extended the mechanically-
coupled reaction diffusionmodel consisting of Eqs. (4)–(6) by including the dynamic
effect of chemotherapy in the tumour growth equation:

∂N (x, t)
∂t

= ∇ · (D(x, t)∇N (x, t)) + k(x)N (x, t)
(
1 − N (x, t)

θ

)
− αCd (x, t)N (x, t) (9)

where α is the patient-specific drug efficacy andCd(x, t) is the drug concentration in
the tissue.Cd(x, t)was approximated patient-wise bymeans of the two-compartment
model commonly used to analyze the contrast agent pharmacokinetics in DCE-
MRI data (see Sect. 2.2). This approach has two central limitations: it assumes that
the drug and the contrast agent have similar dynamics, and that all chemothera-
pies explicitly induce tumour cell death. However, Jarrett et al. showed that their
drug-informed model predictions outperformed those of the mechanically-coupled
reaction-diffusion model without the drug term when compared to patient-specific
estimates of tumour cell density extracted from DW-MRI via Eq. (1) at the end of
chemotherapy; in particular, the CCC improved from 0.85 to 0.99 (p < 0.01).

4 Computational Methods to Solve Image-Based Cancer
Models

Mechanistic models of cancer usually consist of coupled, nonlinear PDEs. Using the
appropriate numerical strategies, these cancer models can be solved and rendered as
a computer simulation of the spatiotemporal development of a patient’s tumour; i.e.,
a tumour growth forecast. In this sectionwewill provide an elementary description of
the Finite Difference Method (FDM) [64], Finite Element Analysis (FEA) [43] and



68 G. Lorenzo et al.

Isogeometric Analysis (IGA) [21]. All these numerical methods have been widely
used to solve PDEs in science and engineering.

4.1 The Finite Difference Method

The FDM relies on a direct approximation of the derivatives involved in the PDEs of
the model by means of Taylor series expansions [64]. To apply the FDM, we define
a global time interval for the simulation [0, T ] and a geometric domainΩ consisting
of a 3D box that includes the tumour-harboring organ. Let us discretize [0, T ] with a
constant time step Δt , leading to a partition in time subintervals [tn, tn+1], such that
tn+1 − tn = Δt , t0 = 0, tnt = T , and n = 0, . . . , nt − 1. We discretize Ω with a uni-
form 3D cartesian grid composed of np = nxnynz nodes numbered A = 1, . . . , np,
where nx , ny and nz are the number of nodes in each spatial direction. Let g = (i, j, k)
further denote the grid coordinates of each node, such that i = 0, . . . , nx − 1, j =
0, . . . , ny − 1, and k = 0, . . . , nz − 1. Then, the spatial coordinates of each node A
can be written as xA = x0 + h ◦ g, where h = (hx , hy, hz) is a vector holding the
grid spacing in each spatial direction. Figure3 illustrates an FDM grid in 2D.

The standard FDM uses first-order approximations of the time and spatial deriva-
tives in the PDE at the grid nodes and at a certain time instant t̃ ∈ [tn, tn+1]. For
example, the time derivative in Eq. (4) would be approximated by

∂N (x, t)
∂t

≈ N (xA, tn+1) − N (xA, tn)

Δt
= Nn+1

i, j,k − Nn
i, j,k

Δt
(10)

x

y

Voxel gridFDM grid 

g(x)=1g(x)=0

Fictitious node 

Physical node 

Ω: Physical space
x

y

Adjacent nodeCurrent node 

Fictitious nodePhysical node 

(a) Spatial discretization in FDM (b) Image-based FDM

Ω: Physical space

Fig. 3 The Finite Difference Method (FDM). a In FDM, the model equations are solved on a
rectangular grid of physical nodes, which approximates the physical space Ω representing the
problem’s geometry. Ancillary fictitious nodes may also be required to construct the FDM grid.
Spatial derivatives are approximated with linear combinations of the model solution at times tn and
tn+1 on each node and adjacent neighbors in each grid direction. b The FDM can be formulated
using imaging voxel data by defining one node per voxel. The organ segmentation can be used to
build a map g(x) to defineΩ and hence identify physical (g(x) = 1) and fictitious nodes (g(x) = 0)
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on each node at t = tn+1. Higher-order derivatives are recursively approximated with
first-order approximations of the subsequent lower-order derivatives. Ultimately, the
FDM method reduces the PDE on every node to an algebraic equation involving a
combination of values of the PDE solution on the current and adjacent nodes in each
spatial direction (see Fig. 3) at instants tn and tn+1. Then, the general strategy is to
recursively use the known nodal values of the PDE solution at tn , {N (xA, tn)}A=1,...,np ,
to calculate the nodal values at tn+1, {N (xA, tn+1)}A=1,...,np .

Depending on the choice of t̃ , there are three common FDM approaches in prac-
tice: the explicit Euler method (t̃ = tn), the implicit Euler method (t̃ = tn+1), and the
Crank–Nicolsonmethod (t̃ = tn + Δt/2) [64]. The explicitmethod enables the direct
calculation of the PDE solution on the grid nodes at tn+1, {N (xA, tn+1)}A=1,...,np , from
the nodal values of the solution at tn . This approach involves a minimal computa-
tional cost, which has been exploited for the recursive model resolutions involved
in the patient-specific calibration of image-based models of brain and breast cancer
[37, 50]. For example, the application of the explicit method to Eq. (4) yields

Nn+1
i, j,k − Nn

i, j,k

Δt
= D

(
Nn
i−1, j,k − 2 Nn

i, j,k + Nn
i+1, j,k

h2x
+ Nn

i, j−1,k − 2 Nn
i, j,k + Nn

i, j+1,k

h2y
+

+ Nn
i, j,k−1 − 2 Nn

i, j,k + Nn
i, j,k+1

h2z

)
+ ki, j,k N

n
i, j,k

(
1 − Nn

i, j,k

θ

)
(11)

at every grid node, where we have denoted k(xA) = ki, j,k . Note that in Eq. (11),
we can directly compute Nn+1

i, j,k from a linear combination of nodal values at tn .
However, the explicit method usually requires small time steps to ensure numerical
stability. The implicit and Crank–Nicolson methods lead to a system of np × np

algebraic equations whose resolution provides {N (xA, tn+1)}A=1,...,np . These FDM
schemes are computationally more intensive, but show better numerical stability
and enable the use of larger time steps. Application of these methods to nonlinear
PDEs like Eq. (4) results in a nonlinear algebraic system, which can be solved
with Newton’s method by iteratively solving the corresponding linearized system
[64]. Alternatively, an implicit-explicit method can use an implicit approach for the
diffusion operator and an explicit scheme for the nonlinear logistic term [64, 92],
which leads to a linear algebraic system.Currently,multiple sparse-matrix algorithms
enable a computationally efficient resolution of most linear systems emanating from
the application of the implicit, Crank–Nicolson, and implicit-explicit methods [64].

Boundary conditions (BCs) in FDM are applied to the grid nodes lying on the
boundary of Ω (i.e., ∂Ω). The usual approach is to fix the value of the PDE solution
on them (Dirichlet BCs) or to approximate a differential boundary condition with
an FDM scheme (Neumman and Robin BCs) [64]. However, organ borders have
complex geometries that rarely coincide with the FDM cartesian grid. This leads to
the partition of Ω into the physical domain, corresponding to the tumour-harboring
organ, and a fictitious domain, as shown in Fig. 3. FDM codes label grid nodes as
physical or fictitious and only solve the PDE on the former. Additionally, FDM codes
need to identify the physical nodes closer to organ borders to apply BCs.
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FDM may be appealing for image-based cancer models because of its simplicity,
rapid implementation, and that the cartesian grid can naturally fit the voxel datasets
obtained with the imaging technologies described in Sect. 2, as shown in Fig. 3. How-
ever, the FDM neglects the approximation of the organ geometry and simply relies
on placing sufficient grid nodes to capture the organ’s border. This impedes an accu-
rate implementation of BCs and may also compromise the resolution of geometry-
sensitive problems (e.g., mechanics). FEA and IGA overcome these limitations, also
providing superior numerical results that are supported by a strong and rigorously
demonstrated mathematical basis [21, 43].

4.2 Finite Element Analysis and Isogeometric Analysis

4.2.1 General Framework

The central constituents of FEA and IGA are (i) the weak or variational formulation
of the strong form of the model, and (ii) a robust approximation of this variational
formulation using finite-dimensional function spaces with powerful approximation
properties [21, 43]. To define and illustrate these ideas, let us start by considering
the stationary heat equation over a certain physical domain Ω:

∇ · (κ∇u(x)) + f (x) = 0, (12)

where κ is the constant heat conductivity, u(x) is the spatial map of temperatures
over Ω , and f (x) is a heat source. We further consider homogeneous Dirichlet BCs
(i.e., u(x) = 0 on ∂Ω), which together with Eq. (12) constitute the strong form of the
problem. To derive the weak form or variational formulation of this PDE model, we
define the trial function space U , where the PDE solution resides, and the weighting
function space V . To this end, we choose U ,V ⊂ H1, which is the Sobolev space
of square-integrable functions with square-integrable first derivatives. Standard FEA
and IGA follow a Bubnov–Galerkin approach. For our heat problem, this translates
in U = V with functions u ∈ U and w ∈ V verifying u(x) = w(x) = 0 on ∂Ω . The
interested reader is referred to [21, 43] for a rigorous construction of U and V .
We obtain the weak form of our heat problem as follows: we multiply all terms in
Eq. (12) by an arbitrary w(x) ∈ V , integrate the PDE in space over Ω , and integrate
the diffusive term by parts using the divergence theorem recalling that w(x) = 0 on
∂Ω , which cancels the boundary integral. As a result, the weak form is

∫
Ω

∇w(x) · (κ∇u(x)) dx −
∫

Ω

w(x) f (x)dx = 0, (13)

which accounts for both the PDE and the BCs [21, 43]. Let us define the finite-
dimensional subspaces Uh ⊂ U and Vh ⊂ V to approximate the infinite-dimensional
spaces U and V , respectively. We choose a set of basis functions {BA(x)}A=1,...,np
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spanning Uh and Vh , where np = dim(Uh) = dim(Vh). This enables us to discretize
the weak form in space. Now, our aim is to find uh(x) = ∑np

B=1 uB BB(x) in Uh sat-
isfying Eq. (13) for any wh(x) = ∑np

A=1 wABA(x) in Vh = Uh . In these expressions,
the coefficients uB andwA are real constants. Using the definition ofwh and recalling
that all wA are arbitrary, we can simplify Eq. (13) to the Galerkin form

∫
Ω

∇BA(x) · (
κ∇uh(x)

)
dx −

∫
Ω

BA(x) f h(x)dx = 0, (14)

for all A = 1, . . . , np and where f h(x) = ∑np

A=1 f ABA(x). Then, by introducing
uh(x) = ∑np

B=1 uB BB(x) in Eq. (14) and rearranging terms, we obtain

np∑
B=1

uB

∫
Ω

∇BA(x) · (κ∇BB(x)) dx =
∫

Ω

BA(x) f h(x)dx, (15)

for all A = 1, . . . , np. Equation (15) corresponds to a linear algebraic systemKU =
F, where F = {FA} and K = {KAB} are given by

FA =
∫

Ω

BA(x) f h(x)dx and KAB =
∫

Ω

∇BA(x) · (κ∇BB(x)) dx. (16)

The solutionU = {uB}provides the coefficients to determine theFEAor IGAapprox-
imation uh(x) = ∑np

B=1 uB BB(x) to our original model in Eq.(12). In this process,
the construction of the finite spaces Uh and Vh along with the basis {BA(x)}A=1,...,np

are key steps that ultimately control the convergence and accuracy of the numerical
scheme, and that exhibit methodological differences between FEA and IGA.

Standard FEA uses piecewise Lagrangian polynomial bases to approximate uh(x)
[43]. The piecewise architecture of FEA bases enables the partition of Ω in a mesh
of ne subregions termed elements, as shown in Fig. 4. FEA bases are also isopara-
metric [43], which is a crucial property enabling the use of the same basis func-
tions to describe the geometry Ω of our problem by means of a function G(x) =∑np

A=1 xABA(x), where xA are the physical coordinates of a known set of points over
the elements termed global nodes.

FEA bases {BA(x)}A=1,...,np are built from a canonical local basis defined on a

parent element Ω̂ , which is common for all the elements in the mesh. The local basis
{ba(ξ)}a=1,...,nb is composed of nb functions constructed on the local coordinate sys-
tem ξ of the parent element (see Fig. 4). Each local basis function ba is associated to a
unique point in the parent element termed local node, with local coordinates ξ a (see
Fig. 4). For each element e in the mesh, we can build a geometric mapping from the
parent element given by xe(ξ) = ∑nb

a=1 x
e
ab

e
a(ξ), where xea are the physical coordi-

nates of the local nodes of element e in Ω . Hence, we can repeatedly map the parent
element and the local basis to each of the elements in the mesh (see Fig. 4), thereby
obtaining the definition of the local basis over each element e, i.e., {bea(xe)}a=1,...,nb . In
this process, we also build a connectivity array of the form A = c(e, a) to identify the
global nodes xA and global basis functions BA(x) associated to each element’s local
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Fig. 4 Finite ElementAnalysis (FEA) and IsogeometricAnalysis (IGA). a In FEA,we approximate
the physical domain by repeatedly mapping a common parent element Ω̂ over Ω using a geometric
map xe to generate each element in the mesh. The parent element supports a local function basis
{b1, b2, b3}, which, once mapped to Ω from each element, contributes to the definition of a global
function basis. This is used to approximate the model equations in variational form and is usually
integrated using quadrature rules also defined on the parent element (red crosses). b Unstructured
FEA meshes can be built to match the segmentation of an organ extracted from medical images
(left). Alternatively, immersed-boundary approaches define a FEA mesh matching the voxel grid
and a map g(x) to identify the physical domain in which the model will be solved (right). c In
IGA, the physical domain is approximated with a topologically equivalent parametric space Ω̂ ,
that is globally mapped onto Ω . The parametric space results from the tensor product of univariate
piecewise spline basis {bi }i=1,...,ni and {b j } j=1,...,n j . The resulting multivariate spline basis is used
to approximate the model equations in variational form. These can be integrated using quadrature
rules (red crosses) defined over the quadrature space Ω̃ , which is mapped to Ω via composition
of ‘q23s φe and xe for each element. d IGA meshes can be built to match the segmentation of an
organ extracted form medical images (left). Alternatively, immersed-boundary strategies define an
IGA mesh aligning with the voxel grid and a map g(x) to identify the physical domain in which the
model will be solved (right)

nodes xea and local functions bea(x
e) [43]. Note that the combination of all element

geometric mappings ultimately renders the geometric function G(x) representing
all Ω .

The geometric map xe is invertible, such that we can use its inverse to map
each element e in the mesh back to the parent element. This pull-back enables us to
integrate any basis function over the common parent element and always use the same
quadrature rule. This is a key idea to efficiently calculate vectorF andmatrixK, using
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processes called formation and assembly. This strategy consists of looping over the
elements of the mesh, such that for each element ewe (i) use the connectivity array to
identify the local nodes and basis functions, (ii) pull them back to the parent element,
(iii) calculate the integrals participating in Eq. (16) using Gaussian quadrature, and
(iv) assemble the resulting local values f ea and Ke

ab by summing them into their
corresponding global counterparts FA and KAB as indicated by the connectivity
array. Note that FA and KAB will receive a contribution from each of the elements
sharing node A. In step (ii) we can also pull back spatially varying functions over each
element, such as f (x) or even uh(x) (e.g., in nonlinear problems). Thus, the processes
of formation and assembly capitalize on the piecewise definition of FEA bases over
the elements to efficiently calculate the integrals in Eq. (16) specifically wherever
the basis functions are defined, instead of performing an inefficient integration over
the whole physical domain Ω[43].

IGA is considered a generalization of FEA because it relies on the same core
ideas. However, IGA employsmore sophisticated polynomial functions coming from
computer graphics because its root idea is to use the functions exactly describing a
computer-generated geometric model of Ω (e.g., an engineering design, an organ
segmentation) to numerically solve the PDE problem posed on such geometry [21].
Conversely, in FEA we first choose the basis to approximate the solution uh(x) and
then we use it to describeΩ , which usually results in an approximation ofΩ as well.
Thus, IGA bases are geometrically-exact and isoparametric. IGA bases also show
higher global continuity, which ultimately yields superior accuracy [21].

Non-Uniform Rational B-splines (NURBS) define the most usual function space
in IGA [21, 25]. Univariate NURBS bases are globally defined by a knot vector,
which is a set of non-decreasing coordinates termed knots enabling the definition
of all NURBS basis functions over a segment parametric space Ω̂ (see Fig. 4).
Multivariate NURBS bases are defined by the tensor product of univariate NURBS
bases. Likewise, the tensor product of the corresponding knot vectors results in
the definition of the complete IGA mesh formed by ne elements in a multivariate
parametric space Ω̂ , which is topologically equivalent to the physical space Ω . The
isogeometric elements are formed by the knot lines in each parametric direction (see
Fig. 4). Each of the resulting np basis functions BA(ξ) defined in Ω̂ is associated
to a control point, with parametric coordinates ξ A and physical coordinates xA.
This results in the definition of an invertible global geometric mapping xg(ξ) =∑np

A=1 xABA(ξ), bringing the whole IGAmesh from the parametric space Ω̂ into the
physical space Ω and providing an explicit definition of the problem geometry (i.e.,
G(x)). Contrary to global nodes in FEA, the control points in IGA do not necessarily
align with themesh andmay even be placed out ofΩ [21, 25]. The restriction of xg to
each of the elements also enables the construction of the invertible element geometric
mapping xe, which relies on the identification of the nb local basis functions and
associated local control points defined over the element e by means of a connectivity
array as in FEA. Additionally, the connectivity array in IGA further accounts for the
univariate basis functions that gave rise to the multivariate basis functions [21].
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As the knot vectors are arbitrary, the elements in parametric space may have
varying sizes.Thus,we further define auniquequadrature space Ω̃ ,which is common
to all elements, and an ancillary invertible element mapping φe(ξ̃) from Ω̃ to each
element in Ω̂ . During the process of formation and assembly, we combine xe and
φe to perform the pull-back from Ω to Ω̃ and calculate the integrals participating
in matrices and vectors of the final system (see Eq. (16)). The rest of the assembly
steps in IGA are essentially the same as in FEA (see [21]).

4.2.2 FEA and IGA for Image-Based Cancer Models

Let us now consider the reaction-diffusion cancer growth model in Eq. (4). Standard
FEA and IGA approaches are boundary-fitted, i.e., the physical space Ω represents
the patient’s organ (see Fig. 4). Here, we will derive the weak form of Eq. (4) with the
usual no-flux BC∇N · n = 0.We choose U ,V ⊂ H1 and, using a Bubnov–Galerkin
approach, we obtainU = V [21, 43].We defineUh ⊂ U andVh ⊂ V andwe choose a
basis {BA(x)}A=1,...,np to span Uh and Vh . Standard FEA and IGA approximate time-
dependent functions f (x, t) as f h(x, t) = ∑np

A=1 f A(t)BA(x). Then, the Galerkin
discretization of the reaction-diffusion model’s weak form is

∫
Ω

BA
∂Nh

∂t
dΩ +

∫
Ω

∇BA · (D∇Nh)dΩ −
∫

Ω

BAk
hNh

(
1 − Nh

θ

)
dΩ = 0,

(17)
for all A = 1, . . . , np andwhere kh(x) = ∑np

A=1 kABA(x). To discretize and integrate
in time, we propose the generalized-α method [17, 21, 48]. This approach relies on
a partition of [0, T ] in subintervals [tn, tn+1] with an arbitrary time step Δtn , the
discretization of ∂Nh(x, t)/∂t = ∑np

A=1 ṄA(t)BA(x), and the definition of vectors
Nn = N(tn) = {NA(tn)} and Ṅ

n = Ṅ(tn) = {ṄA(tn)}. The generalized-α method is
a predictor-multicorrector algorithm that provides Nn+1 and Ṅ

n+1
given Nn and Ṅ

n
.

This method can be proven to be second-order accurate and A-stable by adequately
choosing its defining parameters (see [20, 21]). The resulting system of nonlinear
algebraic equations can be solved iteratively with Newton’s method (see [20, 21]).

Finally, there are multiple approaches to generate boundary-fitted meshes in FEA
and IGA [126]. Unstructured meshes are the usual strategy in FEA and consist
of populating a geometric model of the patient’s tumour-hosting organ generated
from its segmentation with tetrahedral or hexahedral elements [1, 67, 115]. In IGA,
a common approach is parametric mapping, whereby a known geometric model
that is topologically equivalent to the organ’s geometry is deformed to match the
organ’s segmentation [70, 71]. However, image-based cancer models may be more
amenable to immersed-boundary methods [13, 24, 78, 85, 100]. These strategies
rely on constructing the FEA/IGA mesh to align with the voxel grid and defining
a function g(x) accurately representing the organ’s boundary. Hence, the function
g(x) enables the definition of the physical space Ω and a fictitious space over the
rest of the mesh (see Fig. 4). The model PDEs are solved over the whole mesh but
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their parameters are weighted with g(x), such that they take their usual value in the
physical domain and a negligible value in the fictitious domain. Immersed-boundary
methods may also rely on local refinement to improve the discretization of g(x)
[100].

5 Calibrating Image-Based Mathematical Oncology
Models

Mathematical models of cancer define a forward problem, whose solution provides
state variables (e.g., tumour cell density). In general, these models are parameter-
ized by unknown biophysical parameters (and possibly initial conditions) that typi-
cally manifest substantial variability across subjects [68, 75, 99]. The estimation of
these unknown variables (also called inversion variables) should be patient-specific
and can be mathematically posed as an inverse problem, which aims at optimizing
an objective function constrained by the model. Since image-based cancer models
are usually represented by PDEs, the resulting inverse problem is formally a PDE-
constrained optimization problem. In this section, we outline the general formulation
of the inverse parameter estimation problem and discuss the standard methods to
compute its solution, keeping in mind the ultimate goal of patient-specific tumour
characterization and model prediction. Figure5 illustrates the typical image-based
inverse problem workflow in the context of brain tumours.

5.1 Inverse Problems for Oncology Models

Let F(p, c) = 0 denote a cancer model consisting of a PDE system, where p is a
vector of unknown parameters and c(x, t) represents the state variables. The inverse
problem seeks to estimate p such that the model state variables c(x, t) match given
observational patient data (see Fig. 5). In oncology, the input data is usually a series
of medical images (e.g., MRI, PET) at specific time instances {t j } j=1,··· ,nt within a
finite time horizon (0, T ]. These define our observations ĉ j (x) of the state variables in
the forward model c(x, t), e.g., tumour cell density (see Sect. 2.1). Then, the inverse
problem can be mathematically formulated as

min
p

J (p, c) = 1

2

nt∑
j=1

∫
Ω

(
c(x, t j ) − ĉ j (x)

)2
dx + R(p) s.t. F(p, c) = 0, (18)

whereΩ is the spatial domain representing the patient’s tumour-harboring organ. The
objective function J (p, c) minimizes the mismatch between the predicted tumour
and observed data at times {t j } j=1,··· ,nt using an L2 distance measure. Additionally,
it balances this data fidelity/mismatch term with a regularization operator R(p).
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Fig. 5 Workflow for an image-driven biophysical inverse problem. a The goal is to extract clinically
relevant biomarkers from input multi-parametric MRI data that can predict and guide intervention
so as to improve clinical outcome. Purely imaging-based approaches (feature extraction) can be
integrated with biophysical priors (biophysical model inversion) to develop tools that can assist
in treatment and prognosis. b The input data for patients with brain tumours (multi-parametric
MRI scans) is at a single time point (treatment typically follows immediately after diagnosis) and
is translated into model observables for tumour concentration cobs. The inverse problem seeks to
estimate unknown biophysical parameters p of a given mathematical model. The basic idea is
to perform a number of model simulations with different parameters so that the model-predicted
tumour matches the observed data. The panels in this figure are adapted from [73]

Designing algorithms for the efficient and effective numerical solution of such
PDE-constrained optimization problems is a challenging task [2, 63]. While
derivative-free optimization strategies are popular due to ease of implementation,
they are typically associated with slow convergence and can become prohibitively
expensive (especially if the dimensionality of p is large). Hence, optimization algo-
rithms that utilize gradient information are preferable. In addition to improving con-
vergence and computation time, these methods can reveal important characteris-
tics of the objective function landscape, which can be exploited to design better
algorithms and help us understand the sensitivities and ill-posedness inherent to
PDE-constrained optimization problems. There exist multiple options for evaluat-
ing the gradient (and higher order derivatives) of the objective function, such as
automatic differentiation, numerical approximation through finite differences, and
adjoint-basedmethods. For oncologymodels, several groups have employed adjoints
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for inversion [19, 27, 29, 35, 57, 104]. Some efforts also employ Hessian informa-
tion to accelerate convergence [29, 97]. Other strategies such as derivative-free opti-
mization [15, 60, 76, 118] or finite difference approximations [39] have also been
considered in literature, but are usually less effective than adjoint-based methods.
For large-scale 3D inversion, parallel (distributed memory) algorithms have been
considered in [29, 97, 104].

While the deterministic approaches just described are successful in estimating
the optimal parameters to the minimization problem in Eq. (18), their utility could
be limited due to uncertainties arising from modeling errors and noise in measure-
ments/data. A probabilistic (Bayesian) formulation can mitigate this drawback by
characterizing our confidence in the inversion variables p using probability density
functions. This approach will be described in Sect. 6.2, as part of a comprehensive
Bayesian framework formodel selection. In the following section,we briefly describe
adjoint-based inversion methods.

5.2 Adjoint Methods for Inverse Problems

The standard technique for solving the inverse problem posed in Eq. (18) is to intro-
duce Lagrange multipliers λ(x, t), which are termed adjoint variables or simply
adjoints, and construct the Lagrangian functional as

L(c,p, λ) = J (p, c) + 〈F(p, c), λ〉, (19)

where 〈.〉 denotes an appropriate inner product (typically L2) and J (p, c) denotes
the objective function defined in Eq. (18). By requiring stationarity with respect
to the state, adjoint, and inversion variables, we arrive at the first order optimality
conditions by taking the following variations:

δλL = 0 (forward equations), (20a)

δcL = 0 (adjoint equations), (20b)

δpL = 0 (inversion equations), (20c)

where δzL denotes the variation of L with respect to z. The forward equations are
simply the tumour growth PDE model. The adjoint equations are linear PDEs in
the adjoint variables backward in time. The inversion equations denote the PDE-
constrained gradient of J (p, c), which is set to zero at the local minimum.

For example, consider the reaction-diffusion cancermodel inEq. (4)with the usual
no-flux BC ∇N · n = 0 and two tumour cell density observations N̂0(x) and N̂1(x)
derived fromDW-MRI at t = t0 = 0 and t = t1 (see Sect. 2.1).We assume that N̂0(x)
are known initial conditions for Eq. (4), and use N̂1(x) to calibrate p = {D, k(x)},
where D is a scalar constant and k(x) is a spatial field, representing the tumour
cell diffusion and proliferation rate, respectively (see Sect. 2.1). Then, we define the
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objective function J (p, N ) and the Lagrangian functional L(N ,p, λ) as

J (p, N ) = 1

2

∫
Ω

(
N (x, t1) − N̂1(x)

)2
dx + a

2

(
D2 +

∫
Ω

k2(x)dx
)

, (21)

L(N ,p, λ) = J (p, N ) +
∫ t1

0

∫
Ω

λ(x, t)
(

∂N (x, t)
∂t

− ∇ · (D∇N (x, t))

−k(x)N (x, t)
(
1 − N (x, t)

θ

))
dxdt, (22)

where a is a regularization parameter. Following Eq. (20b), the adjoint equation is

− ∂λ(x, t)
∂t

= ∇ · (D∇λ(x, t)) + k(x)λ(x, t)
(
1 − 2N (x, t)

θ

)
, (23)

which is a linear backward problem in time subject to the BC ∇λ · n = 0 on ∂Ω

and the terminal condition λ(x, t1) = N̂1(x) − N (x, t1). Following Eq. (20c), the
inversion equations are given by

aD +
∫ t1

0

∫
Ω

∇λ(x, t) · ∇N (x, t)dxdt = 0, (24)

ak(x) −
∫ t1

0
λ(x, t)N (x, t)

(
1 − N (x, t)

θ

)
dt = 0. (25)

In general, Eq. (20) represents a large, non-linear, coupled system of PDEs, which
can be significantly challenging to solve simultaneously. Instead, a standard approach
involves a reduced space algorithm, which is an iterative strategy that reduces Eq.
(20) to a system involving only the inversion variables. In each iteration, we use the
current approximation to p to solve the state and adjoint equations to respectively
get the current approximation to the state and adjoint variables. Then, we update
our inversion variables using the inversion equations. This process is repeated until
convergence, which is typically set by a user-defined threshold on the parameter
update (i.e., the parameter gradient). In contrast to full spacemethods, reduced space
methods present more tractable systems that can exploit existing PDE solvers for the
state and adjoint equations and are better conditioned. We refer the reader to [2] for
more details on adjoint methods in PDE-constrained optimization.

6 Model Selection and Identification of Relevant
Parameters

Given the vast array of cancer growth models in the literature, it is not trivial to
choose which is the best to represent the available data and to predict key quantities
of interest (e.g., the tumour size, treatment efficacy, or percentage of necrosis) for a
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certain tumour type. In this section, we describe the Occam Plausibility Algorithm
(OPAL), which has been proposed in [26] as an adaptive process for model selection
and validation in the presence of uncertainties. The strategy relies on three key steps:
sensitivity analysis to identify the relevant model parameters, model calibration of
the relevant parameters, and calculation of model selection criteria. The OPAL can
be referred to asmodel agnostic in that no single model is advocated; rather, the best
model is selected based upon our model selection criteria. Details regarding each
step of the OPAL are given in the next subsections.

6.1 Variance-Based Sensitivity Analysis

Sensitivity analysis quantifies how changes in parameter values affect the uncertainty
in model output [95]. We can distinguish between local and global methods. Local
methods compute the variation of the model output changing one parameter at a time
(i.e., first-order effects) usually via derivation, but neglect the interactions between
the parameters. In global methods, the contribution of each parameter along with its
interactions with other parameters (i.e., higher-order effects) are taken into account,
as all parameters are varied simultaneously over the entire parameter space. In this
work, we present the variance-based global sensitivity analysis method, also known
as the Sobol method [93, 102]. Details regarding local and other global methods can
be found in [93].

LetM(θ) be a model parameterized by k parameters θ , which belong to a parame-
ter space Θ ⊂ R

k . The computational cost of the sensitivity analysis of modelM(θ)

depends on the number of parameters k and the sample size N , with the total num-
ber of model evaluations given by NT = N (k + 1). There are several approaches to
estimate the total sensitivity index for each parameter, which quantifies all effects
of the parameter on the model output. Here, we present the strategy in [94], as it is
known to demand a reduced sample size to converge.

First, we randomly generate two sampling matrices, A and B, with size N × k.
Each row of these matrices represents a sampled value for the vector of parameter θ .
Additionally, we create k matrices A(k)

B , where we copy the values from the matrix
A and replace the values from column k with the values from B. For the case where
N = 1, these matrices are given as: A = [θa

1,1 θa
1,2 . . . θa

1,k], B = [θb
1,1 θb

1,2 . . .

θb
1,k], A(1)

B = [θb
1,1 θa

1,2 . . . θa
1,k], A(2)

B = [θa
1,1 θb

1,2 . . . θa
1,k], . . ., and A(k)

B =
[θa

1,1 θa
1,2 . . . θb

1,k].
Then, we run the forward model for each row in matrix A and all matrices A(k)

B .
The outputs of themodel are stored in corresponding solution vectors for eachmatrix;
i.e., YA, Y1

AB , …, Yk
AB . Finally, we compute the total sensitivity index STi for each

parameter, which can be approximated [49, 93, 94] by
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STi = 1

2NVar(YA)

N∑
j=1

(
(YA) j −

(
Y(i)

AB

)
j

)2

, (26)

where Var(YA) is the variance of vector YA. According to [93], a parameter i can
be considered non-influential if STi = 0. In practice, we define a threshold ε and we
identify a parameter i as non-influential if STi < ε. The choice of ε is relative to other
STj and problem-dependent. If STi is sufficiently small, then the parameter does not
affect the quantities of interest, and the complexity of the model can be reduced by
removing or fixing the parameter to any value within the uncertainty range [93].

6.2 Model Calibration

To characterize uncertainties in the observable data and the stochastic behavior of
tumour growth, we follow theBayesian statistical calibration procedure. Thismethod
captures these uncertainties by delivering a probabilistic distribution of the model
parameters, instead of a single value for each of them [66, 67, 82, 83]. The basic
ideas behind the Bayesian parameter estimation involve the following steps:

1. Select the observational data D to be used (e.g., baseline and follow-up MRI).
2. Establish the prior distribution of the model parameters πprior (θ). In the cases

where we do not have knowledge regarding the distribution of the parameters,
and we can only estimate the range of these parameters, the usual approach is to
assume a uniform prior distribution.

3. Construct the likelihood function, which, given the values assigned to the param-
eters θ , yields the probability of D being observed [83]. Assuming both the
experimental error and the model inadequacy to be Gaussian, and the experi-
mental data to be independent and identically distributed, the likelihood is given
as

πlike(D|θ) =
Nt∏
i=1

1√
2πσ 2

exp

(
− (Di − Yi (θ))2

2σ 2

)
, (27)

where Nt is the number of data points, σ is the standard deviation of the exper-
imental error and model inadequacy, and Y (θ) is the model output.

4. Compute the posterior distribution of the parameters πpost (θ |D) as

πpost (θ |D) = πlike(D|θ)πprior (θ)

πevid(D)
, (28)

where πevid(D) = ∫
Θ

(
πlike(D|θ)πprior (θ)

)
dθ is the model evidence. The

resulting posterior distribution of the parameters allows the prediction of the
quantities of interest taking into account the uncertainties in the parameters.
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The posterior probability density function is, in general, non-Gaussian. Sampling
schemes such as Markov Chain Monte Carlo (MCMC) methods can be used to
evaluate posterior expectations [66, 67]. These stochastic methods can incur in a
large computational cost, so efficient sampling strategies exploiting the problem
structure are actively being investigated [23, 86, 87, 114].

6.3 Model Selection Criteria

Following the Bayesian framework used for calibration, we approach model selec-
tion by computing the model plausibility [10, 16, 54, 83, 87]. Given a set of m
modelsM = {Mi (θ i )}mi=1, the Bayes’ rule in Eq. (28) can be rewritten assuming that
probabilities are conditional on the model Mi and the set M :

πpost (θ i |D, Mi ,M) = πlike(D|θ i , Mi ,M)πprior (θ i |Mi ,M)

πevid(D|Mi ,M)
. (29)

The evidence of each model can be viewed as a likelihood for a discrete Bayesian
calculation, yielding a new posterior called the model plausibility, πplaus , given as

πplaus(Mi |M,D) = πevid(D|, Mi ,M)πprior (Mi |M)

πevid(D|M)
, 1 ≤ i ≤ m. (30)

If we assume that all models are equally probable, πprior (Mi |M) = 1
m . The sum of

all model plausibilities is equal to one (i.e.,
∑m

i=1 πplaus(Mi |M,D) = 1). The model
with highest plausibility is selected as the best model in M to capture the data.

Another popular method of model selection is the Akaike Information Criterion
(AIC) [59]. In this method, the likelihood of the maximum likelihood estimator, θ̂ ,
is penalized according to the number of model parameters, i.e.,

AICi = −2 logπlike(D|θ̂) + 2ki , 1 ≤ i ≤ m, (31)

where ki the number of parameters in model Mi . In this case, the model with the
lowest AIC is the best model inM.

6.4 The Occam Plausibility Algorithm

OPAL has been proposed as a comprehensive framework that combines parameter
sensitivity analysis, and model calibration, validation, selection, and prediction [26,
83]. Figure6 shows a schematic representation of the main OPAL steps, which we
outline in the following [26, 82]:
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Initial set of models Sensitivity analysis Occam step

Calibration stepIterative Occam step

Plausibility stepIs the model in the
last Occam category?

Identify a new set
of possible models

Validation stepIs the model valid?Prediction step

No

No

Yes

Yes

Fig. 6 The Occam Plausibility Algorithm (OPAL). This framework brings together experimental
data for model calibration and validation, sensitivity analysis, selection, and model prediction

1. Identify a set M = {M1(θ1), M2(θ2), . . . , Mm(θm)} of parametric models, each
with parameters θ i belonging to an appropriate parameter space Θ i , 1 ≤ i ≤ m.

2. Perform a sensitivity analysis to identify non-influential parameters. Based on this
analysis, the values of these parameters are fixed to the mean value used in the
sensitivity analysis. If there is a model inM, whose only difference to other model
is given by the non-influential parameters, this model can be eliminated, yielding
a reduced set M̄ = {M̄1(θ1), M̄2(θ2), . . . , M̄l(θ l)} of models, with l ≤ m.

3. Divide the models in M̄ into “Occam Categories” according to their complex-
ity (e.g., number of parameters). These categories are sorted in ascending order
according to their complexity.

4. Calibrate the models in Category 1 using the calibration data Dc.
5. Select the best model to represent the data in this category (e.g., the model with

the highest plausibility).
6. Test the best model identified in the current category in a validation scenario,

where the posterior from the calibration step is used as a prior and the distribution
of the parameters are updated against the validation data Dv . If the model is able
to represent the data within a preset tolerance, the model is considered “valid”. If
not, we return to step 3 and move to the next Occam category. If we are not able
to find a valid model, we need to return to step 1 and include new models.

7. After finding the “simplest” validmodel, solve the forwardmodel in the prediction
scenario and compute the quantities of interest.

All of these steps are designed to consider uncertainties in the choice of model,
the model parameters, the observational data, and the target quantities of interest.
All uncertainties are generally characterized by probability densities.
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7 Towards the Optimization of Personalized Treatment
Plans

Several image-based mathematical models of cancer growth have shown promise in
predicting treatment outcomes in a patient-specific manner, as discussed in Sects. 3.4
and 3.5. Those models could provide a means to determine optimal therapeutic
regimens to treat a certain type of cancer in silico, which could then be investigated
within a clinical trial in vivo. Hence, this computational approach seeks to help
clinicians navigate the vast array of radiotherapy and drug combinations, dosing
options, and treatment schedules and select optimal strategies, which are virtually
impossible to assess in clinical trials. Ultimately, cancer models could also serve as
a digital twin for the patient’s tumour, thereby enabling the pathological assessment,
monitoring, and design of optimal therapeutic regimens for the individual patient in
silico. In this section, we discuss the use of image-based predictive tumour growth
models accounting for the therapeutic regimen and associated tumour response for
the discovery of optimal therapeutic regimens and the design of patient-specific
optimal treatment strategies.

7.1 Potential to Select Treatment Plans for Individual
Patients

Selecting a treatment regimen for a patient is a complex process. Oncologists use
decision tree algorithms to select therapeutics for each patient considering, for exam-
ple, tumour grade and cell markers [12]. However, the determination of the optimal
dosing regimens for these therapies is vastly underinvestigated. This limitation fol-
lows from the impossibility to test all the potential dosing strategies within a clinical
trial. Additionally, regimens may be altered by the treating oncologist due to con-
siderations like side effects and quality of life for the patient, where doses may
be skipped, dosages decreased, and/or supportive medications prescribed. However,
these changes aremade onlywith a limited knowledge of their effects on the treatment
outcome for any given patient.

As patients present with varying physiologies and sensitivities, the one-size-fits
all approach is clearly not optimal for all patients. Mathematical models of tumour
growth and treatment response can help us predict therapeutic efficacy accounting
for each patient’s specific tumour dynamics and, potentially, select the best thera-
peutic regimen for each individual patient. For instance, Jarrett et al. [52] used the
model in Eq. (9) to investigate alternative dosing regimens of cytotoxic therapies for
breast cancer in silico. First, the model was parameterized patient-wise using MRI
data collected prior to the start of therapy and after one drug cycle as indicated in
Sect. 3.5. The resulting personalized model was then simulated to the time of com-
pletion of the prescribed therapeutic regimen, and the simulated tumour growth was
compared to the actual tumour response measured by MRI for each patient. The
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model predictions were found to be highly correlated with actual tumour response
(N = 13, CCC> 0.90, p < 0.01 for total cellularity, total volume, and longest axis),
so the model was considered valid to reproduce the effects of chemotherapy in breast
cancer. Their validated model was then used to explore alternative therapeutic regi-
mens, which were defined patient-wise by fixing the total dose prescribed in standard
regimen and varying frequency and dosage. The authors indicated that an additional
0–46% reduction (median=17%) in total cellularity may have been achievable across
the patient cohort (N = 13) compared to the standard chemotherapeutic regimens
that the patients were prescribed. The dosing regimens that the model predicted to
reduce/control each tumour were also found to significantly outperform standard
regimens for tumour control (p < 0.001), thereby supporting the claim that standard
regimens may not be the most effective for every patient.

7.2 Optimal Control Theory for Personalized Treatment
Planning

Consider a dynamical system involving a set of variables u(t) and controls z(t), which
are functions describing external forces that can alter the system dynamics. Optimal
control theory (OCT) was developed to determine the solution of the system that
achieves a particular outcomeby adequately adjusting the controls. Themathematical
formulation of the optimal control problem consists of minimizing or maximizing an
objective functional J (u, z). Thus, given a particular dynamical system over a certain
time interval [0, T ], applying OCT largely consists of determining the objective
functional, problem-specific constraints, and a method for solving the OCT problem.
The general form of the objective functional for OCT is

J (u, z) = Φ[u(t j ), z(t j ), t j ] +
∫ t f

t0

L(u(t), z(t), t)dt, (32)

where Φ[u(t j ), z(t j ), t j ] includes target values of the variables and the controls at
specific times {tk}k=1,...,nt , while L(u(t), z(t), t) accounts for the target dynamics
of the variables and the controls over [0, T ]. Φ[u(t j ), z(t j ), t j ] has several names
in OCT literature, including endpoint cost in minimization problems and terminal
payoff in maximization problems. The formulation of the objective function can
also be divided into three canonical types: endpoint control, which only includes
Φ[u(t j ), z(t j ), t j ]; bang-bang control, which only features a linear L(u(t), z(t), t);
and continuous control, which only has a quadratic L(u(t), z(t), t). The objective
function can also be constructed by combining these canonical types. The term bang-
bang refers to the usual dynamics of optimal control z(t) for this type of functional,
which switches between themaximum admissible value and z(t) = 0 (i.e., no effect).
Additionally, the quadratic term in the continuous control is not usually motivated
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by problem-dependent phenomena, but it ensures that the optimization problem is
convex. Hence, the optimal control problem has keymathematical features, including
the existence of a global minimum.

In the context of cancer, we can apply OCT to obtain optimal treatment strategies
by using a mathematical model to simulate tumour growth and therapeutic response
as a dynamical system, setting the treatment as a control, and selecting clinically-
relevant treatment outcomes in the objective functional. Here we will briefly discuss
the formulation of the OCT problem using a simplification of the PDE model of
breast cancer chemotherapy in Eq. (9), whereby we directly model the total number
of tumour cells n(t) using the ordinary differential equation (ODE) [56, 124]:

dn(t)

dt
= kn(t)

(
1 − n(t)

θ

)
− αz(t)n(t) (33)

where k describes global tumour cell proliferation, θ is the tissue carrying capacity, α
models chemotherapy efficacy, and z(t) represents the dynamics of the concentration
of drug(s) in the plasma, which is used to derive the initial concentration of drug in
the tissue Cdrug(x, t) in Eq. (9) [50]. We chose this ODE model for the sake of
simplicity and because ODE models have been commonly used in the cancer OCT
literature [5, 51, 62, 96, 107]. However, the following ideas could also be applied
to the PDE model in Eq. (9) by defining n(t) = ∫

Ω
N (x, t)dx (see [3]).

A primary goal of OCT problems for cancer treatment is to minimize the tumour
burden only at the completion of the therapy,which can be formulated by the endpoint
control functional

J1(n) = n(t f ). (34)

This optimal control problem requires additional constraints for the therapeutic reg-
imen z(t). For example, these can limit the maximum dose by setting z(t) < zmax

and/or the total maximum dose by imposing
∫ T
0 z(t)dt < ztot , which is termed an

isoperimetric constraint (see Fig. 7). The limits zmax and ztot are drug-dependent
and may be patient-specific (e.g., quality of life, comorbidities). However, the opti-
mization of J1(n) is insensitive to the dynamics of the drug concentration; i.e., it
does not formally adapt the drug regimen to the tumour burden. Another limitation
of endpoint control formulations is that they do not consider the potential growth of
the tumour during therapy, which may be relevant to select actionable therapeutic
regimens depending on the type of cancer.

To address this limitation, we can extend the objective functional in Eq. (34) with
a bang-bang term accounting for z(t):

J2(u, z) = w1n(t f ) + w2

∫ T

0
z(t)dt. (35)

where w1 and w2 are problem specific weights that can be included in the objective
function to give greater or lesser importance to the different terms in the objective
functional during optimization. For example, if a particular treatment has significant
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adverse side effects, w2 > w1 may be enforced to focus the problem on minimizing
the total drug dose. Similarly, an objective function that includes the continuous
control of the therapy can be written as

J3(u, z) = w1n(t f ) + w2

2

∫ T

0
(z(t))2dt. (36)

Furthermore, the objective function can also account for the tumour growth over the
entire treatment period:

J4(u, z) = 1

2

∫ T

0
w1(n(t))2 + w2(z(t))

2dt. (37)

The main difference between the optimal treatment solution found for objective
function J2 versus J3 and J4 is that J2 assumes that a constant dose is given over a
certain interval, while J3 and J4 assume that the drug concentration z(t) can change
over time. These differences are shown in Fig. 7. In principle, an on-off (bang-bang)
control would be more clinically relevant than the continuous control, as patients
are not usually treated over time in a continuous manner. However, this type of
control would result in a sudden drop in z(t) after the conclusion of each drug
cycle (see Fig. 7), whereas in reality z(t) decays with an approximately exponential
trend. With the introduction of take-home infusion pumps for chemotherapy [125],
evaluating continuous control may be amore plausible avenue of investigation. How-
ever, the optimal z(t) obtained under continuous control may also be unachievable
with the current drugs for cancer treatment (e.g., due to incompatible pharmacoki-
netics). Ultimately, the optimal drug concentrations z(t) obtained with these func-
tionals can render valuable information to guide the design of clinically-feasible
optimal therapeutic strategies. Another future goal could even be the synthesis of
new drugs or the adaptation of current drug compounds to match target dynamics
emanating from the combination of OCT, cancer modeling, and pharmacodynamics
[44, 72, 101].

Finally, optimal control problems using J2, J3, and J4 may include clinically-
relevant constraints to further focus the solution, including the limitations to z(t)
discussed for J1. For instance, we can limit the tumour burden at any time by impos-
ing n(t) < nr , where nr is an arbitrary threshold. Additional constraints can also
limit the frequency f of doses, for example, by setting f ≤ T/nd , where nd is the
maximum number of doses per treatment period. Larger systems of equations that
may account for the healthy and immune cell populations may also require additional
constraints and/or incorporate these other variables into the optimal control problem
itself. Beyond biological concerns are the logistical, monetary, and psychological
costs that may also be considered for an optimal regimen. The reader is referred to
[5, 51, 62, 96, 107] for further details on applying OCT to cancer models.
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Fig. 7 Optimal control problem solutions for the ODE model of cancer chemotherapy in Eq. (33).
a Without an isoperimetric constraint, the optimal control problem using J1 yields z(t) = zmax ,
which would probably induce acute toxicity in patients. The optimal z(t) for the bang-bang control
using J2 produces the characteristic stepwise solution, while the optimal z(t) obtained with the
continuous controls in J3 and J4 show a continuous decay. The drug regimens calculated with J1,
J3 and J4 successfully control tumour growth, while for J2 we observe regrowth once z(t) drops
to zero. b If we impose the isoperimetric constraint, the optimal z(t) for J1 and J2 coincide and
produce a similar regimen to the bang-bang solution without isoperimetric constraint. The optimal
z(t) obtained with the continuous controls in J3 and J4 now take lower concentration values, which
translate into a limited tumour control. Balancing the maximum drug delivered during treatment,
the maximum reduction in tumour burden, and the relative weights in the formulations of J2, J3,
and J4 is a challenge in OCT applications in cancer, which may render very different results

8 Barriers to Success

One of the principal issues preventing the successful translation of image-based
computational modeling technologies to routine clinical practice is access to proper
data. Calibration and validation of image-based cancer models require individual
quantitative imaging data at multiple time points during the course of surveillance
or treatment. The acquisition of frequent and rich imaging datasets might be feasi-
ble in preclinical settings, thereby enabling the realization of controlled studies to
thoroughly assess model validity. However, such controlled studies are extremely
challenging in a clinical scenario for two key reasons. First, the timely and effective
treatment of the patient and their quality of life are the utmost priorities. Thus, a con-
trolled validation study would require the acquisition of minimal datasets to ensure a
reliable calibration of the model, while ensuring that data collection is not a burden
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for patients and that those in the model-informed arm will be closely monitored in
case immediate action is warranted during the course of the controlled study. Second,
quantitative imaging data are not routinely collected in the current clinical protocols.
Standard-of-care imaging primarily focuses on delineating tumour boundaries for
staging and planning interventions (e.g., biopsy, surgery, and radiotherapy). How-
ever, anatomical imaging fundamentally limits modeling approaches as it does not
quantitatively characterize the unique heterogeneous nature of each patient’s tumour.
In addition, standard-of-care images are often acquired only before and following
the completion of therapy. This is partly due to financial constraints, hospital work-
flow, scanner availability, and patient burden. Thus, carefully designed studies are
needed to determine a clinically-feasible strategy to collect sufficient quantitative
imaging data enabling an accurate parameterization of predictive models of cancer.
For instance, abbreviated imaging protocols may fit quantitative, research-focused
scans into routine clinical visits alleviating the need for separate research scans.
Additionally, many quantitative imaging data types can now be acquired in the com-
munity setting (i.e., away from major hospitals or oncology centers), which may be
more convenient for patients [103].

From a modeling viewpoint, a central challenge is balancing model complexity,
a rational use of computational resources, data requirements to ensure an accurate
calibration, and predictive accuracy. The dynamics of cancer growth and treatment
response is extremely complex, involving a multitude of biophysical processes inter-
acting at various spatial and temporal scales [74]. Mathematical models of cancer are
built upon a series of relevant biophysical phenomena, whose selection, formulation,
and calibration ultimately determines the predictive power of the model [90, 122,
123]. The accurate modeling of some of these phenomena (e.g., angiogenesis [113])
would require complex equations at multiple scales, a large number of parameters
requiring extensive spatiotemporal data, and advanced numerical methods that may
incur in a large computational cost. However, such models would be incompatible
with the constraints on quantitative imaging data availability and patient care during
the controlled validation studies discussed above.

Thus, clinically-oriented image-based models usually require conservative mod-
eling assumptions, which enables the description of cancer growth and treatment
response at organ scale using simple modeling paradigms and involving a minimal
set of parameters whose calibration is feasible with existing quantitative imaging
techniques [122]. However, these model assumptions may incur substantial errors
that ultimately limit the predictive power of the model. Moreover, some biophys-
ical model fields (e.g., tumour cell density) are not directly observed. Instead, the
observed imaging data must be preprocessed to create a proxy to the biophysical
observables. Such pseudo-correspondences introduce additional uncertainties and
can significantly affect the reconstruction results [29, 32, 61, 108]. Likewise, the
phenomenological nature ofmacroscopic cancermodels introduces parameters with-
out direct biological counterparts (e.g., tumour cell diffusivity, drug efficacy), which
further complicates model assessment and validation.
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Nevertheless, the future development of image-based cancer models requires the
initial validation of simpler models because this enables the identification of key
improvements in model formulation to refine predictive accuracy. In addition, the
success of simpler models also provides justification to collect further data to cali-
brate more complex biophysical mechanisms in subsequent model extensions. For
example, this has been the process behind the extension of the logistic model in
Eq. (3) to the reaction-diffusion model in Eq. (4), then to a mechanically-coupled
model in Sect. 3.2, and later to a vasculature-coupled or drug-informed model in
Sects. 3.3 and 3.5, respectively.

Biophysical inversion is a promising strategy to calibrate predictive models of
cancer, but also presents several challenges. Complex, typically nonlinear and time-
dependent, PDE-based models often result in ill-conditioned and non-convex opti-
mization problems, which require sophisticated numerical algorithms to stabilize the
inversion, such as multiresolution continuation, parameter continuation, and regu-
larization schemes [29, 98, 99, 104]. Data scarcity can exacerbate the ill-posedness.
Mitigating this issue can entail imposing additional modeling assumptions and reg-
ularization strategies [104]. The noise arising from various sources in imaging data
also complicates model inversion. Further modeling priors and structure-exploiting
algorithms can help mitigate some of these issues. Other mathematical considera-
tions such as the choice of mismatch function (e.g., L2 loss, cross-entropy loss) and
regularization models can further complicate the inversion. Inversion methods may
also require several forward model evaluations, so specialized solvers are needed to
prevent prohibitive computational costs.

OPAL is an attractive methodology to decide potential model extensions by com-
prehensively assessing the improvement in model predictions against the increase
in model complexity. In particular, OPAL can guide the modeler to select the best
valid model representing a certain experimental or clinical setting while accounting
for uncertainties in both data and model parameters. However, OPAL may also face
certain challenges. For example, computationally expensive models might require a
more efficient approach for sensitivity analysis than the Sobol method, such as the
elementary effects method or metamodels [93]. Another major difficulty in model
selection is that every model in the initial set of models might be invalid (i.e., they
do not satisfy the validation criteria), which would require to extend such set with
further models.

Finally, application of OCT to mathematical models of tumour growth and treat-
ment response is a promising strategy for the optimization of therapeutic regimens in
silico [52]. However, the reliability and plausibility of solutions generated by OCT
methods depend on several factors including the validity of the model, the accurate
definition of the objective functional, the uncertainty in the parameters and data, the
application of clinically-relevant constraints, and the accuracy in solving the OCT
problem itself. Additionally, implementation of OCT approaches within the clinical
trial system is even more complicated than model validation. Beyond the challenges
on data availability, model assumptions, and biophysical inversion described above,
a controlled clinical study to validate OCT-generated therapies would involve the
test of novel computationally-derived regimen protocols in patients. This requires a
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closemonitoring of treatment response, toxicity, and patientwell-being,which can be
extremely complex to balance and maintain during such clinical study. Thus, robust
preclinical evidence showing the advantages of OCT for the design of therapeutic
regimens is required before advancing to clinical scenarios.

9 Conclusion

Integrating quantitative data obtained from biomedical imaging with mechanism-
based mathematical modeling represents a significant departure from current para-
digms in cancer biology and oncology. More specifically, this approach is funda-
mentally different from the current trend in modeling which emphasizes applying
the methods of artificial intelligence to extremely large data sets. However, statistical
inference—though enormously powerful—relies on properties of large populations
that can frequently obscure important characteristics (or conditions) that are specific
to individual patients andmay drive the development of their disease or their response
to therapy. The high-consequence decisions present in clinical oncology simplymust
be based on more than data analytics. These decisions must incorporate biophysical
processes within a rigorous, mathematical framework that can be calibrated with
patient-specific data to make patient-specific predictions. The transformation from
population-based care to patient-based care is inevitable, and the intimate integra-
tion of quantitative imaging, mechanism-basedmathematical modeling, and efficient
computational methods enabling precise in silico tumour forecasts is a very promis-
ing avenue to achieve this important goal.
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The Effect of Over-Feeding
in a Computational Model of Tumour
Growth

Pan Pantziarka, Lina Ghibelli, and Albrecht Reichle

1 Introduction

This work explores the effects of excess nutrient in an agent-based lattice model of
tumour growth. The Non-physiological Evolutionary Algorithm for Tumour Growth
(NEATG) model is a platform that has previously been used to explore aspects of
tumour regrowth following cytotoxic treatment and the impact of tissue-cell commu-
nicative breakdown (anakoinosis) [1]. The model has been shown to recapitulate
real-world tumour growth dynamics and display emergent behaviours in line with
in vitro tumour systems. This work is motivated by a chance observation during
regression testing of the model after refactoring of the code. During this series of
tests a number of model runs had shown excessive run-times due to unexpectedly
high rates of tumour growth. On investigation it was ascertained that a single model
parameter had been mistyped and that the nutrient supply had been set at a supra-
physiological level. This study expands on this chance finding to explore the impact
of over-feeding on tumour growth dynamics and its relation to response to cytotoxic
treatment.

The NEATG platform is coded in the Java programming language and is designed
to explore the effects of different treatment scenarios on tumour growth. It consists of
an agent-based model of cells, representing both cancer and non-cancer populations,
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on a rectangular lattice. Each grid element of the lattice can contain a configurable
number of cells in competition for nutrient and growth factors. Cells contain genes
which encode for fitness, as well as phenotypic features which are also taken into
account for fitness. The model is evolutionary in that genetic changes can occur at
cell division and cells can also migrate from one element of the lattice to another
when over-crowding leads to competition. In addition to the core model, NEATG
also contains a reporting engine so that detailed information can be recorded during
run-time. More details of the model and its behaviour are reported in [2].

The theory of anakoinosis views tumours as complex adaptive systems with aber-
rant signalling/communication between tumour cell populations and the local tissue
environment [3, 4]. As a treatment paradigm is posits that communicative repro-
gramming is an essential ingredient for successful tumour control—and has been
tested in multiple clinical trials across a range of cancer types. This hypothesis
was incorporated into an enhanced version of the NEATG model which we called
NEATG_A, and which was reported in a prior study [1]. In this version of the model
communication between cells and the tissue was modelled as a simple handshake
protocol between cells and the local lattice grid element. Simply put, communica-
tive dysfunction created a permissive local environment which more easily enabled
tumour growth. Anakoinosis treatment reprogrammed this handshaking algorithm
and reduced the permissive environment, correcting aberrant cell-tissue communica-
tion. Results from the model showed that a combination of cytotoxic treatment and
anakoinosis treatment was more successful than either single treatment in slowing
the accelerated tumour regrowth following initial treatment—a finding in line with
results from clinical trials of anakoinosis treatment.

As detailed in previous studies, at each time step cells are able to consume nutrient
and gene factors and are able to change state based on their internal state and the state
of the grid element in which they are located. Details of this process are outlined in
the two previous studies alreadymentioned. Themodel in this study is theNEATG_A
model with a number of minor enhancements in reporting and CPU performance.
The initial impetus for this study arose in the context of the regression testing of
changes in the platform to ensure that code refactoringhadnot changed the underlying
behaviour of the model. During this series of tests one of the input parameters to a
treatment scenario script file was mistyped and the nutrient supply was multiplied
by 10, resulting in an excessive run-time. This was caused by a very high rate of
cancer cell growth. In previous studies the impact of nutrient supply had focused on
the effects of restricting nutrient supply. It had been shown that restricting nutrient
supply caused a reduction in normal cell counts compared to the number under
homeostatic conditions (i.e. with adequate nutrient supply). It had been noted that a
slightly increased nutrient supply did not have significant effects on cell counts, but no
investigation had been performed to assess the impact of very high excess nutrient
supply. This work, therefore, explores the effects of very high nutrient supply on
tumour growth dynamics, on the interaction of over-feedingwith cytotoxic treatments
and the relationship with anakoinosis.
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2 Methods

Cells in the NEATG family of models consume nutrient that is supplied to each
element of the lattice grid. Each grid element can contain a variable number of cells,
some of which are Malignant cells and some are Normal (non-transformed) cells.
Each cell has a nutrient store which can conserve nutrient that is not consumed and
the amount of nutrient consumed per time period is controlled by the nutrient rate
for that cell. The nutrient rate is a mutable characteristic of a cell, and therefore may
increase or decrease in daughter cancer cells during cell division. When the nutrient
store is depleted, or a cell’s lifetime (number of clock ticks) has counted down to
zero, then a cell will undergo a change of state, as shown in the lifecycle in Fig. 1.

Each grid element is seeded with an initial population of Normal cells, under
homeostatic conditions and with no Malignant cells present this population remains
stable as cells multiply, complete their lifetimes and undergo apoptosis. However,
Malignant cells can disrupt this and multiply at a greater rate therefore increasing the
number of cells such that cell competition takes place when the population exceeds
the maximum carrying capacity. Nutrient is represented as anr integer value and is
divided between all cells in a grid element according to the following distribution
function:

Ni = S
Ti

∑P
p=1 Tp

whereNi is the nutrient supplied to the ith cell, T is the target value (nutrient demand)
for a cell and S the nutrient supplied to the grid element, and P the number of cells
in the grid element.

Cell lifetime is the number of time periods or clock-ticks that define the duration
of a cell’s existence. In this work all cells were defined to have a lifetime of 100
clock-ticks, although as a mutable property of a cell this could evolve over time in
Malignant cells. Typical model runs were for 1500 or more clock-ticks/iterations.
Other key cell parameters include thenumber of genes and individual geneparameters
as described previously. In this work the same 3-gene structure and settingswere used
as in previous studies as the behaviours associated with these parameters are now
well-characterised.

The NEATG_A model implemented a simple handshaking protocol to represent
cell-tissue communication, in this case communication between a cell and the grid
element in which it is located. This communication consists of a cell reporting a
signature which is compared to a signature contained at the grid element to check for
differences—defined as the Levenshtein distance between signatures. The signatures
are derived from a combination of genomic and phenotypic data such that two cells
with the same genomes and phenotypes have the same signature, for example all
Normal cells, but any changes, for example a gene mutation, will cause a difference
between the mutated and non-mutated version of the cell. The Levenshtein distance
is a numeric measurement of the degree of change [5]. The handshake protocol
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Fig. 1 Cell fate program—note the same cycle is used for both Malignant and Normal cells. At
cell division Malignant cells may probabilistically undergo a mutational event. The Tol figure
corresponds to the degree of permissiveness of the host environment

implements a ‘go-no-go’ decision point when cell division takes place such that
if a the distance between the cell signature and the grid level signature exceeds a
given value, termed the Tolerance, then cell division is inhibited. Systems in which
the Tolerance value is greater are therefore more tolerant of genomic change than
systems in which the Tolerance value is lower and genomic change is constrained.
The theory of anakoinosis posits that cancer exists where there is communicative
dysfunction, and that correcting or reprogramming this aberrant cell-tissue signalling
is essential for the successful treatment of cancer.
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Table 1 Key NEATG_A parameters used in this series of experiments

Parameter Effect Value

Maximum cell count The maximum carrying capacity of a grid element—when the
number of cells reaches this value cell competition takes place

10

Nutrient rate The amount of nutrient consumed by a cell per clock tick 1

Nutrient supply Amount of nutrient supplied to a grid element—shared between
cells using the distribution function previously described

10

Nutrient target Nutrient demand for a cell 10

Invasion rate The probability of a cell migrating to a neighbouring grid
element during cell division

0.10

Mutation rate Probability that a cell division will lead to a mutation event 0.05

Tolerance The maximum allowed Levenshtein distance between tissue and
cell signature (i.e. a measure of the permissiveness of the system)

9

Width/Length The number of grid elements (width x length) 50, 50

Note that these values of nutrient target, nutrient supply and the maximum cell count ensure that
in homeostatic conditions all cells receive sufficient nutrient to meet their metabolic demands (i.e.
nutrient supply = nutrient rate). A key objective of this work is to investigate tumour growth
in situations where the nutrient supply far exceeds the nutrient rate

Our previous work has established a set of key parameters that produce home-
ostasis in the absence of Malignant cells (e.g. cell metabolism, cell turnover etc.)
and tumour growth when seeded with one or more Malignant cells (e.g. growth
and spread of Malignant cells, mutational events leading to the emergence of clonal
subpopulations etc.). Key parameters are shown in Table 1.

In this study we perform a series of experiments to assess the impact of excessive
nutrient supply on cancer growth and how this interacts with cytotoxic treatment and
anakoinosis treatment. All experimentswere carried out on aWindows 10 system and
the 64-bit OpenJDK Java run-time environment (version 11.0.6). Statistical analysis
was performed using R (release 4.0.3) and RStudio Desktop (version 1.4.1103). The
Akaike Information Criterion (AIC) was used to select whether regression models
should include interaction terms [6].

3 Results

3.1 Malignant Cell Growth

To assess the influence of both nutrient availability and Tolerance, and their interac-
tion, on tumour growth a series of model runs were performed varying each of the
factors. The nutrient supply was varied from 10 to 100 in increments of 10, and for
each value of nutrient the Tolerance was varied from 0 to 9 in increments of 1. Each
combination of nutrient supply and Tolerance (10 × 10) was run 10 times, with a
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Fig. 2 Average Malignant cell growth for 2000 clock-ticks for different Tolerance and nutrient
supply settings—with cytotoxic treatment

duration of 2000 clock-ticks per run. A cytotoxic treatment scenario was initiated at
clock-tick = 1500 which persisted for 25 clock-ticks. Each run was terminated at
clock-tick= 2000. The plot of the average Malignant cell count growth for different
Tolerance values and nutrient supply values is shown in Fig. 2. Note the y-axis varies
per chart.

The associations between nutrient supply and Tolerance are shown at clock-tick=
1499 (immediately before cytotoxic treatment is applied) in the left panel of Fig. 3.
Greater values of Tolerance and higher amounts of nutrient lead to sharply increased
Malignant cell counts.

The count ofMalignant cells alonedoes not tell us of thedegreeof spreadof tumour
within the grid. If we define a tumour grid element as one that includes one or more
Malignant cells we can also look at howTolerance value and nutrient supply are asso-
ciatedwith the spread of tumour cells throughout the grid (in this case a 50× 50 grid).
This is shown in the right panel of Fig. 3.

Multiple regression analysis was used to test if the Tolerance, nutrient supply
and their interaction significantly predicted the count of Malignant cells at time
points clock-tick = 1000 and clock-tick = 1499. At clock-tick 1000 the regression
showed a highly significant relationship that explained 53%of the variance (Adjusted
R-squared= 0.53, F(3, 997)= 375.6, P < 2.2e-16). At clock-tick= 1499 the regres-
sion showed a higher explanatory value with an adjusted R-squared value of 67%
(Adjusted R-squared = 0.67, F(3, 997) = 685.9, P < 2.2e-16).



The Effect of Over-Feeding in a Computational Model … 105

Fig. 3 Left panel: Relationship between malignant cell count and nutrient supply and Tolerance
value. Right panel: Association of number of tumour grid elementswith Tolerance value and nutrient
supply

In addition to the increase in Malignant cell numbers and invasiveness across grid
elements wewould also expect to see evolutionary change associated with increasing
Tolerance and nutrient supply. The left panel of Fig. 4 shows the average number of
distinct genotypes, including extinct genotypes, which have existed by clock-tick =
1499 for different values of Tolerance and nutrient Supply. Both greater Tolerance
and nutrient supply values lead to a larger exploration of the genotype space than
more restrictive Tolerance environments or with more constrained nutrient supply.
A multiple regression model indicated a highly statistically significant relationship
(Adjusted R-squared = 0.65, F(3,997) = 627.9, P < 2.2e-16).

Fig. 4 Left panel: Number of distinct genotypes at clock-tick = 1499. Right panel: Number of
clonal subpopulations at click-tick = 1499
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Fig. 5 Left panel: Changes in nutrient target (i.e. nutrient demand) and changes in nutrient supply
and Tolerance. Right panel: Change in nutrient rate as a function of nutrient supply and Tolerance

Intra-tumour heterogeneity is another, and arguably more clinically relevant,
measure of evolutionary change within a tumour system. This is shown in the right
panel of Fig. 4. Regression analysis of the number of clonal subpopulations as a func-
tion of Tolerance and nutrient Supply, and their interaction, shows that the model is
able to predict 70% of the variance (Adjusted R-squared = 0.70, F(3,997) = 763.2,
P < 2.2e-16).

Given that nutrient demand, in the formof the variable nutrient Target, is amutable
factor in Malignant cells we can also investigate the relationship between this value
and the increasing Tolerance and nutrient supply values. Figure 5 shows how the
nutrient target value rises from a baseline of 10 in response to increases both in
nutrient supply and in Tolerance. In other words Malignant cells become greedier in
response to increasing nutrient supply and increasing Tolerance.

The nutrient rate parameter is also mutable and is roughly analogous to the
metabolic rate of a cell as it encodes how much nutrient a cell consumes in each
clock-tick. As shown in the right panel of Fig. 5 the average nutrient rate of Malig-
nant cells shows little change in response to increases in nutrient supply or Tolerance.
Greedier cells are therefore not consuming additional nutrient but are using it to boost
fitness and therefore their chance to proliferate in competition with other cells.

A series of runs were also performed in which the nutrient supply was reduced to
below the baseline homeostatic value of 10. In the majority of runs there was little or
no Malignant cell growth and a high degree of cell atrophy as non-Malignant cells
died off due to lack of nutrient (data not shown).
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4 Cytotoxic Treatment

The NEATG systems feature a number of different treatment scenarios which can be
used to model the effects of treatment on malignant cell numbers, the degree of inva-
sion, genetic heterogeneity etc. The most basic treatment option is loosely modelled
on maximum tolerated dose chemotherapy. In this cytotoxic scenario apoptosis is
induced inMalignant cells which are close to cell division. There is a degree of collat-
eral damage in that some non-Malignant cells which can also be affected—although
Malignant cells are more susceptible.

The kill rate we have defined as the percentage difference between the number
of Malignant cells before the commencement of cytotoxic treatment, at clock-tick=
1499, and thefirst clock-tickafter the cessationof treatment (i.e. at clock-tick=1526).
A kill rate of 100%means all Malignant cells have undergone apoptosis and there are
no remaining Malignant cells, and a negative kill rate means that there has actually
been an increase in Malignant cell numbers despite the treatment.

Figure 6 shows how the kill rate varies as a function of both the Tolerance and
the nutrient supply. It is clear that at zero Tolerance the treatment has little effect but
beyond that the treatment is effective in reducing Malignant cell numbers by over
80%.

Another view of the kill rate is shown in the left panel of Fig. 7. The coloured
surface shows the average number of Malignant cells remaining after treatment has
ended. Superimposed is the surface plot showing the number of Malignant cells at
clock-tick = 1499, immediately prior to treatment commencing.

A multiple regression model showed a high correlation between Tolerance,
nutrient supply and their interaction and the number of Malignant cells killed by the
treatment. The adjusted R-squared= 0.70, F(3,997)= 787.1, P < 2.2e-16). However,

Fig. 6 Kill rate, (percentage
of Malignant cells killed by
cytotoxic treatment), as a
function of Tolerance and
nutrient supply
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Fig. 7 Left panel: Number of Malignant cells after cytotoxic treatment (in colour), superimposed
is the Malignant cell count prior to treatment (at clock-tick = 1499). Right panel: Malignant cell
growth after end of cytotoxic treatment. In colour—number of Malignant cells at treatment end
(clock-tick = 1526), superimposed is the Malignant cell count at clock-tick = 2000

when looking at the kill rate, AIC model selection showed that a regression model
that did not include the interaction term was a better fit for the data. The adjusted
R-squared = 0.20, F(3,997) = 127.7, P < 2.2e-16).

Tumour repopulation occurs when the number of Malignant cells begins to
increase again after the cessation of treatment. Of course, an ideal treatment would
remove all Malignant cells, but in practice tumour repopulation is a common occur-
rence in the real world. We define the repopulation rate as the percentage increase in
Malignant cells between the end of treatment, at clock-tick= 1526, and an arbitrary
time point post-treatment. In these experimentsmodel runswere for 2000 clock-ticks,
therefore the repopulation rate is defined as the percentage increase inMalignant cells
between clock-tick = 1526 and clock-tick = 2000.

Tumour repopulation is clearly shown in the right panel of Fig. 7. Notable is the
very high increase in post-treatment regrowth with high values of Tolerance and
nutrient supply. In terms of the cell growth post-treatment, a linear regression model
assessing the influence of the Tolerance value, nutrient Supply and their interaction
showed a high level of correlation. The adjusted R-squared= 0.74, F(3,996)= 942.4,
P < 2.2e-16. The repopulation rate is defined as the rate of increase of Malignant
cells between the end of treatment at clock-tick = 1526 and our final time point
at clock-tick = 2000. Using AIC the model selected did not include a term for the
interaction of Tolerance and nutrient supply and the model, although statistically
significant, had low explanatory value. The adjusted R-squared = 0.03, F(3,997) =
17.3, P = 4.2e-08. It is also notable that in this model, in contrast to all others, the
coefficient for nutrient supply was not statistically significant.

A regression model of the final count of Malignant cells, from clock-tick = 0
to clock-tick = 2000, so passing through the treatment period, shows a very strong
relationship between the overall growth of Malignant and Tolerance, nutrient supply
and their interaction. Adjusted R-squared = 0.72, F(3,996) = 849.7, P < 2.2e-16.
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5 Cytotoxic Treatment + Nutrient Reduction (NR)

In this set of experiments the treatment regimen consists of cytotoxic treatment in
combination with a normalisation of nutrient supply to correct the overfeeding. The
aim of this experiment is to reduce the rate of tumour regrowth following cytotoxic
treatment. As before the cytotoxic treatment is initiated at clock-tick = 1500 and
ends at clock-tick = 1525. The nutrient normalisation reverts the nutrient supply to
10, which is the optimum, and commences at clock-tick = 1500 and returns to the
pre-treatment level at clock-tick = 1600. The nutrient restriction treatment is for a
longer period than the cytotoxic treatment in that informal testing had shown that
very short-term nutrient treatments hadmarginal effects compared to themore drastic
step of directly inducing cell death via cytotoxic treatment. The growth curves are
shown in Fig. 8.

In comparison to the treatment in Fig. 2 we can see that the nutrient restriction
delays the start of the accelerated regrowth that occurs at the end of the cytotoxic
treatment for the duration of the nutrient restriction. This delay leads to a statistically
significant reduced malignant cell growth at the final time-point at clock-tick= 2000
(comparison of the means of the Malignant cell count in the two treatments, across
all values of Tolerance and nutrient supply, shows a lower mean in the cytotoxic +
nutrient restriction treatment, P= 3.564e-05). However, it could be argued that there
is a longer duration between the end of the cytotoxic treatment and clock-tick= 2000.
If we therefore compare Malignant cell counts for a duration of 250 clock-ticks after

Fig. 8 Average Malignant cell growth for 2000 clock-ticks for different Tolerance and nutrient
supply settings—with cytotoxic treatment + nutrient restriction
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Fig. 9 Gradient ofMalignant cell repopulation for thefirst 250 clock-ticks after the endof treatment.
Left panel, cytotoxic treatment, right panel cytotoxic + nutrition restriction

the cessation of treatment, then there is in fact a higher Malignant mean cell count
in the cytotoxic + nutrient restriction group (4029 versus to 3572 for the cytotoxic
treatment, P = 0.0026). The gradient of the Malignant cell repopulation for the first
250 clock-ticks after the end of treatment is shown, for both treatments, in Fig. 9.
The addition of nutrient restriction delays the beginning of population regrowth but
when nutrient levels return to pre-treatment levels the regrowth is more aggressive.

6 Cytotoxic Treatment + Tolerance Normalisation (TN)

In this treatment arm the Tolerance level is normalised during the treatment period,
commencing at the same time as the cytotoxic treatment (clock-tick = 1500), and
continuing for 100 clock-ticks whereas the cytotoxic treatment completes at clock-
tick= 1525. The over-feeding is not altered in this treatment arm. The growth curves
are shown in Fig. 10. Direct comparison of the final Malignant cell counts at clock-
tick = 2000 between this treatment and cytotoxic + nutrient reduction shows a
statistically significant difference, with this treatment arm having much lower final
cell counts (9342 versus 11,427, P= 4.477e-07). However, comparison of Figs. 8 and
10 shows a very similar story in terms of the shapes of the curve—steep decline when
cytotoxic therapy begins followed by a plateau during the combination treatment and
then an accelerated repopulation.

Figure 11 shows the comparison of the rate of tumour cell repopulation between
cytotoxic + nutrient reduction and cytotoxic + Tolerance normalisation treatments.
The slower rate of accelerated repopulation in the right panel is striking.
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Fig. 10 Average Malignant cell growth for 2000 clock-ticks for different Tolerance settings—with
cytotoxic treatment and Tolerance normalisation

Fig. 11 Gradient of Malignant cell repopulation for the first 250 clock-ticks after the end of treat-
ment. Left panel, cytotoxic treatment + nutrient reduction, right panel cytotoxic + Tolerance
normalisation
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7 Cytotoxic Treatment + Nutrient Reduction + Tolerance
Normalisation (NR-TN)

This treatment schedule combines nutrient restriction and Tolerance normalisation
commencing at clock-tick= 1500 and runs concurrently with the nutrient restriction
and reverts, along with the nutrient supply, to the pre-treatment level at clock-tick=
1600. The growth curves for different values of nutrient supply and Tolerance are
shown in Fig. 12. In comparison to Figs. 2 and 8, Fig. 12 shows a reduction in final
Malignant cell count and an extended period before regrowth accelerates. The differ-
ence inmean cell counts at clock-tick=2000between this treatment and theNR treat-
ment is significant, (9153 vs 11,427, P= 2.356e-08), although the difference between
this and TN, although lower, does not reach significance (9153 vs 9342, P= 0.602).

Comparison of the repopulation rates between the NR and TN treatments for 250
clock-ticks post-treatment, from clock-tick = 1600 to clock-tick = 1850, is shown
in Fig. 13. Clearly the addition of Tolerance normalisation strongly inhibits, but does
not completely abolish, tumour regrowth in thismodel. The improvement in response
is clear both in absoluteMalignant cell counts and in the comparison of the trajectory
of regrowth.

Fig. 12 Average Malignant cell growth for 2000 clock-ticks for different Tolerance and nutrient
supply settings—with cytotoxic treatment, nutrient restriction and Tolerance normalisation
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Malignant
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Clocktick

Malignant
Cells per
Clocktick

Fig. 13 Gradient of Malignant cell repopulation for the first 250 clock-ticks after the end of
treatment. Left panel, cytotoxic treatment + nutrient restriction, right panel cytotoxic + nutrition
restriction + Tolerance normalisation

8 Discussion

In previous works we have shown that the NEATGmodels display clinically relevant
emergent behaviours related to cancer growth dynamics and responses to treatment.
Previous analyses have also shown that results are in line with in vitro laboratory data
from a panel of cancer cell lines [1]. Furthermore, NEATG_A was the first computa-
tional model of anakoinosis, a new treatment paradigm that features communicative
reprogramming of aberrant cell-tissue communication.

In this new work we have explored the role of over-feeding, both in terms of
cancer cell growth and in terms of response to treatments. The question of nutrition
and cancer is one that is enormously complex but also of great interest to clinicians
andpatients alike.While the image of cancer cells as addicted to glucose and therefore
vulnerable to metabolic change is a starting point for many ‘anticancer diets’, the
reality is that cancer cells display high levels of metabolic plasticity and respond to
nutrient challenge in ways that are still being elucidated.

In our results the clear impact of excess nutrient supply on the growth and spread
of cancer cells is shown in Figs. 2 and 3. The increased growth associated with
higher nutrient supply is tempered but not abolished by lower values of Tolerance.
The combination of high Tolerance and high nutrient supply leads to the highest
levels of tumour growth. Notably, a multiple regression model predicts Malignant
cell numbers at clock-tick = 1499, immediately prior to treatment, with an adjusted
R-squared of 0.67. It is also notable that the model includes a term for the interaction
of nutrient supply and Tolerance. This is as we would predict, a higher Tolerance
value, representing greater levels of cell-tissue communicative dysfunction, means
that there is more scope for cancer cells to experience genetic change in response
to cell competition. The finding that greater Tolerance and nutrient supply is also
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associated with higher rates of intra-tumour heterogeneity, as shown in Fig. 4, is in
line with this. One aspect of this genetic change is in the increased nutrient demand
that is displayed, although there is no concomitant increase in metabolic rate as
represented by the nutrient rate, as shown in Fig. 5.

These results show that in response to higher Tolerance levels and increased
nutrient supply, Malignant cell numbers increase, cell competition grows and drives
genetic change and increases the Malignant cell avidity for nutrient.

The cytotoxic treatment strategy, which we have modelled in previous studies,
leads to rapid reductions in Malignant cell numbers, as shown in Fig. 2. However, in
line with our previous results, the initial cytotoxic insult does not lead to complete
clearance of all Malignant cells and there is a very fast cancer cell repopulation.
Figure 6 shows that there is little variation in the tumour kill rate related to either
Tolerance or nutrient supply values. However, there is an effect on the degree and
speed of regrowth, as shown in Fig. 7. A linear regression model of Tolerance and
nutrient supply as predictors ofMalignant cell numbers had a high R-squared= 0.74,
and again included an interaction term.

Given the impact of high nutrient supply on both pre- and post-treatment cancer
cell growth,wenext investigated the impact of restricting the nutrient supply as part of
a treatment strategy. In this scenario the nutrient supply was restricted to the optimal
value of 10 for a period of 100 clock-ticks, running from the initiation of cytotoxic
treatment. At treatment end the nutrient supply reverts to the pre-treatment level.
The growth curves are shown in Fig. 8. Here again we see a well-defined collapse of
Malignant cell numbers, a period of little growth and then a very aggressive regrowth.
A comparison of the slope of the regrowth between cytotoxic and cytotoxic+ nutrient
restriction treatments, in Fig. 9, shows in fact that the regrowth is faster for the second
strategy. In other words restricting the nutrient supply, keeping the Tolerance value
unchanged, has no effect on outcomes. Indeed, in comparing the Malignant cell
counts at a common time point, (250 clock-ticks after the end of treatment), there
is a statistically significant higher mean value in the cytotoxic + nutrient restriction
datasets.

In contrast, the combination of cytotoxic treatment and Tolerance normalisation,
with nutrient supply unchanged during the treatment, does show both a lower count
of Malignant cells at the end of the experiment, as shown in Fig. 10, and a reduced
rate of regrowth in Fig. 11. The mean Malignant cell counts also show a statistically
significant reduction. Tolerance normalisation, the very essence of the anakoinosis
treatment paradigm, can be effective even when the over-feeding continues.

In the final experiment the treatment strategy combines cytotoxic treatment,
nutrient restriction and Tolerance normalisation. Here, in addition to restricting the
nutrient supply as before, the Tolerance value was normalised to Tol = 0 for the
duration of the treatment and then reverted to the pre-treatment level at treatment
end. Although the growth curves, Fig. 12, are similar to the previous curves we
should note the lower Malignant cell counts (y-axes). Comparison of the slopes of
the regrowth curves, shown in Fig. 13, indicates a clear difference and confirms the
slowing of the rate of tumour regrowth when adding control of Tolerance to the
treatment mix. While it clearly does not abrogate the regrowth, it does slow it down
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in comparison to cytotoxic treatment and cytotoxic treatment + nutrient restriction.
However, the improvement between this treatment option and cytotoxic+ Tolerance
normalisation is marginal. It is of course possible that over a longer period the NR
+ TN treatment strategy would show more significant improvement over TN alone.

This is a non-physiological model and does not directly address biological mech-
anisms. Amajor limitation is that the over-feeding of cells serves only to increase the
relative fitness of those cells. While these cells display increased avidity for nutrient,
which we may say is analogous to glucose or glutamine addiction in cancer cells,
there are no other biological correlates being modelled. Neither does the model
incorporate the complex metabolic plasticity that has been observed in tumours,
with multiple metabolic compartments and the complex shuttling of nutrients and
by-products between cancer and stromal cell populations [7, 8]. Another limitation
is that the model does not fully explore the interactions between increased nutrient
supply and cell-tissue communicative dysfunction.While there is an interaction term
in many of the linear regressions used in the analysis, the model itself is not struc-
tured to explicitly explore the relationship of these two factors. Intuitively we would
expect that over-feeding has effects both at both cell and tissue levels, for example
over-feeding may increase oxidative stress leading to chronic inflammation and a
concomitant negative effect on tissue homeostasis [9].

However, within these limits the model does display behaviour that is relevant to
cancer. It suggests that an excess of nutrients is a driver of tumour growth, particularly
when there is a high degree of Tolerance. Furthermore, it suggests that accelerated
tumour regrowth—the phoenix rising phenomenon—is also more pronounced with
higher nutrient availability. This is part of the rationale for many so-called anticancer
diets. It is an idea that has much intuitive appeal in terms of ‘starving cancer cells of
the nutrients they need to survive’—however, this model suggests that the effects will
be limited without addressing the issue of cell-tissue communicative dysfunction.
Biologically there is much evidence that fast growing cancers display high levels
of metabolic plasticity and can use alternative substrates to satisfy the metabolic
needs associated with increased proliferation and the low availability of glucose.
Our results suggest that nutrient restriction alone may have little impact on cancer
growth or regrowth following cytotoxic insult.

These results have implications for those looking at dietary interventions as a way
of controlling tumour growth. It is therefore important that our results are validated
in vitro—for example by assessing the impact of overfeeding on cancer cell growth
dynamics and response to chemotherapeutic agents. The use of anakoinosis treatment
to reprogram cell-tissue communication networks should also be explored in the
context of research on anticancer diets and nutrient control in cancer. It should also
be noted that pioglitazone, a key therapeutic drug used in anakoinosis treatment, is
used primarily to treat type II diabetes [10]. It is possible that the use of nutrient
restriction in combination with anakoinosis treatment may emerge as a new strategy
to explore clinically.
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Modeling Tumour Growth
with a Modulated Game of Life Cellular
Automaton Under Global Coupling

Vladimir García-Morales, José A. Manzanares, and Javier Cervera

Abstract We propose a coupled map lattice that simulates the Gompertz tumour
growth model used in cancer diagnosis and is able to reproduce the long-time param-
eter correlations that have been found in previous studies. The coupled map lattice
is a modulated Game of Life cellular automaton model that includes only two free
parameters. Parameter γ governs the strength of a global coupling of the cells due
to the confinement pressure. Parameter κ governs the strength of the intercellular
coupling which modulates the local dynamic rules of Conway’s Game of Life.

1 Introduction

Tumours are self-organizing, complex systems, that must be studied and treated
as such on a micro- and macroscopic level [1]. Macroscopically, a widely-used
phenomenological model of tumour growth is Gompertz model, which describes
the evolution of the tumour volume V as a function of time t as [2–7]

V (t) = V0 exp

(
A

B
(1 − exp(−Bt))

)
(1)

where V0 is the volume at time t = 0, and A and B are parameters. At times t � 1/B,
Eq. (1) reduces toV = V0 exp(At) (exponential growth).At the later stages of tumour
growth, t � 1/B, the volume attains a maximum value Vmax := V0 exp (A/B). A
remarkable empirical correlation found experimentally by Norton et al. [5] is that
parameters A and B seem to be correlated as

exp A = a ln B + b (2)
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where a and b are constants that depend on the type of tumour. This correlation has the
following important implication in cancer diagnosis: By determining the coefficient
A from early stages of tumour development (in which the growth is exponential),
parameter B dictating the characteristic time τc = 1/B that marks the transition
between early and late stages of tumour development can be predicted from Eq. (2)
as B = exp[(−b + exp A)/a]. Consequently, the maximum tumour volume Vmax to
be attained at later stages of growth can be predicted, as well as the whole function
V (t) in Eq. (1).

The Gompertz equation is useful for describing tumour growth, but it does not
reflect any microscopic mechanisms [8]. This fact has motivated some researchers
to devise cellular automata models to explain Gompertzian tumour growth as an
emergent behavior. In a pioneering work, Qi et al. [8] considered a probabilistic
cellular automaton with four different types of cells over a von Neumann neighbor-
hood dependent on six parameters (three of which could be fixed by experiments,
the remaining being free). One of the free parameters dc was meant to account for
the effect of the confinement mechanical pressure: a tumour can only expand if its
inner pressure is larger than the external pressure, a fact that dynamically constrains
the maximum tumour size. However, dc was related to the distance of the cells to the
origin, placed at the center of the lattice, therefore treating the center of the lattice
in a different way to the rest of the lattice (the translational symmetry characteristic
of any cellular automaton being broken). If we consider that a tumour can equally
originate at any other region of the lattice, such symmetry breaking introduces, in
our opinion, an undesirable feature since it not only limits the number of physi-
cally meaningful initial conditions (requiring cancerous cells to be necessarily at the
center of the lattice for a tumour to grow): it also introduces a preferred reference
frame that is unjustified. This feature is also present in the work by Kansal et al.
[9] who presented a probabilistic 3D cellular automaton model depending on four
free parameters on a Voronoi lattice, which is more dense at the center where the
tumour was initially placed. The above mentioned works, [8, 9], discussed two dif-
ferent kinds of tumours actually found in biological systems. Qi et al. considered
the most common type in which the tumour can be active not only at its surface but
also in its interior, e.g., the mouse carcinoma KHT and the spontaneous carcinoma
C3H in mice [8]. Kansal et al. considered activity of the tumour only at its surface,
the interior of the tumour being composed of necrotic, inactive cells, as it is found
in the glioblastoma multiforme in the brain [9]. Both models satisfactorily account
for Gompertzian growth as described by Eq. (1). However, the empirical correlation
shown in Eq. (2), which seems to be apparent in realistic tumour growth, was not
addressed in Refs. [8, 9].

In this work, we present a 2D coupled-map lattice model based on cellular
automata dynamics [10, 11] under global coupling. Our model has only two free
parameters, predicts Gompertzian tumour growth given by Eq. (1) as well as the
correlation between the parameters, Eq. (2), found in Ref. [5]. The local dynamical
rules of the model are similar to those of Conway’s Game of Life [12–16] but are
modulated by a coupling parameter κ . The other free parameter γ accounts for the
global confinement pressure and is called the strength of the global coupling.
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2 Model

We represent a cell in the multicellular ensemble as a site in a 2D square lattice with
� = n2 sites,wheren is the number of sites on a side of the lattice. The dimensionless,
continuous variable ui, jt represents the dynamical state of the cell at site (i, j) at time
t ; hereinafter we refer to the state of the cell as the state of the site. We say that
the site (i, j) is normal when ui, jt ≤ 0.15 and that it is cancerous when ui, jt > 0.15.
A lattice where most sites are found in state 0 is said to be normal, i.e. composed
of normal non-cancerous cells. The total number of abnormal cells in the lattice is
counted as

Nab =
n∑

i=1

n∑
j=1

H(ui, jt − 0.15) (3)

where H(x) is the Heaviside step function (H(x) = 1 if x > 0 and H(x) = 0 other-
wise). The tumour volume is V = Nabv0, where v0 is the “volume” of a single cell
in the lattice.

The biological signals that couple individual cells to their local multicellular
environment may contribute to normalization and are modeled using a continuous
parameter κ that accounts for a weak coupling between cells. This parameter quan-
tifies the weakening of the local dynamical rules due to the limited coupling of each
individual cell to its local neighborhood. For different values of κ , different kinds of
tumour are found, being able to reproduce tumours that resemble those in [8] and
others that resemble those in [9], the type of tumours depending on the values of
the parameter κ . In general, low values of κ tend to enforce the local rules over the
ensemble while high values of κ are associated with limited intercellular commu-
nication [10]. Importantly, our model does not break any translation invariance. A
tumour can start anywhere, not necessarily the center. Although the model is sim-
ple and deterministic, its output is unpredictable because it incorporates Conway’s
Game of Life as the cellular automaton governing the local dynamics in the limit
κ → 0. The deterministic character of the model, and the smoothing and loosening
of the local dynamical rules, as the parameter κ is varied, are helpful to understand
its intricate dynamics with the tools of bifurcation analysis and the qualitative theory
of smooth nonlinear dynamical systems.

Parameter γ accounts for a global coupling. The local dynamics is coupled to the
global average of the dynamical state of the cells in the lattice

ut =
〈
ui, jt

〉
:= 1

�

n∑
i=1

n∑
j=1

ui, jt . (4)

Wenote that a tumourwould growwithout being stabilized if γ = 0.Anon-vanishing
global coupling is necessary for tumour volume stabilization.Theway the latter enters
in our model is analogous to the one found in models of spatiotemporal pattern
formation in chemical systems [17]: the pressure has an stabilizing effect of the
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homogeneous mode and creates a global coupling that is proportional to the lattice
average of a local order parameter. This stabilizing effect is responsible, in our
scenario, for the inhibition of the tumour growth.

2.1 Lattice and States

We consider square (Moore) neighborhoods of 3 × 3 sites. Using periodic boundary
conditions in the lattice, the neighborhood of the site (i, j) is formed by the sites
(i + k, j + m) where k and m can take the values −1, 0 and 1. If a cancerous cell
is in a stable state and is homogeneously surrounded in its neighborhood by stable
cancerous cells with approximately the same value of their dynamical state, we say
that the cell is necrotic.

The evolution of the state of site (i, j) at discrete time steps is given by

ui, jt+1 = Bκ

(
3 − si, jt ,

1

2

)
+ ui, jt Bκ

(
4 − si, jt ,

1

2

)
− γ ut (5)

where κ is the coupling parameter, γ is the global coupling strength parameter, and

si, jt :=
1∑

k,m=−1

ui+k, j+m
t (6)

is the neighborhood sum. The Bκ function [11] of real variables x and y is

Bκ(x, y) := 1

2

[
tanh

(
x + y

κ

)
− tanh

(
x − y

κ

)]
(7)

For all finite values of x and y, the Bκ function satisfies the limits [11]:

lim
κ→∞Bκ (x, y) = 0 lim

κ→∞
Bκ (x, y)

Bκ (0, y)
= 1 (8)

lim
κ→0

Bκ (x, y) = B(x, y) = 1

2

(
x + y

|x + y| − x − y

|x − y|
)

=

⎧⎪⎨
⎪⎩
sgn y if |x | < |y|
sgn y
2 if |x | = |y|

0 if |x | > |y|
(9)

where we have introduced the function B(x, y), which allows a universal map for
cellular automata to be formulated [18].

In the limit κ → 0 and in the absence of global coupling γ = 0, Eq. (5) becomes

ui, jt+1 = B
(
3 − si, jt ,

1

2

)
+ ui, jt B

(
4 − si, jt ,

1

2

)
=

⎧⎪⎨
⎪⎩
1 if si, jt = 3

ui, jt if si, jt = 4

0 otherwise

(10)
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2.2 Relation to Conway’s Game of Life

For Boolean initial conditions and κ → 0 this model is similar to Conway’s Game
of Life [10, 18]:

1. Any site in state 1 with fewer than two nearest neighbors in state 1 takes state
0 at the next time step. The rule establishes the normalizing effect of the local
neighborhood when normal cells predominate.

2. Any site in state 1 with two or three nearest neighbors in state 1 remains in state
1 at the next time step. The rule assumes that the normalization effect of the local
neighborhood is lost when sufficient abnormal cells are present.

3. Any site in state 0 with three nearest neighbors in state 1 changes to state 1 at the
next time step. The rule considers the promotion from a normal to an abnormal
state.

4. Any site in state 1 with more than three nearest neighbors in state 1 changes to
state 0 at the next time step.The rule establishes a limit to abnormal cell expansion,
e.g. because of finite available resources, representing a change from positive to
negative cooperativity.

Note that a predominantly normal neighborhood may constitute a normalizing
microenvironment for a cell because of the abnormal cell underpopulation (rule 1).
On the contrary, a significantly abnormal neighborhood may impair the normaliza-
tion effect and promote the abnormal state (rules 2 and 3). In the case of abnormal cell
overcrowding, however, limited proliferation could arise because of the competition
for finite resources (rule 4) [10].

When κ �= 0, Eq. (5) produces a more ‘fuzzy’ dynamics, and ui, jt is a continuous
variable. Further, we have:

5. The coupling between sites due to the local rules 1 to 4 is modulated by the
parameter κ ≥ 0. This parameter incorporates the collective influence of bio-
logical phenomena such as the stochastic intercellular diffusion of signaling
molecules, the intrinsically probabilistic gene expression, and the individual
cell heterogeneity. These noisy phenomena should weaken rules 1 to 4, which
hold exactly only in the limit κ → 0.

6. A global coupling whose strength is given by a parameter γ ∈ [0, 1] competes
against the local inhomogeneities tending to stabilize a global homogeneous
mode of normal cells. The term−γ ut in Eq. (5) does not contribute significantly
to the local dynamics if most cells in the lattice are normal, i.e., if ut ≈ 0. If
many cells are abnormal, the term −γ ut < 0 has a normalizing effect on an
abnormal cell at position (i, j). The increased impact of the global coupling as
the number of abnormal cells grow eventually stops the tumour growth. This
global coupling represents the effect of the mechanical pressure.

When γ > 0 is increased, as shown in the next section, the homogeneous state
consisting of normal cells tends to be more stable and the abnormal cells tend to be
confined on a smaller region, where they tend to cluster and coalesce.
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2.3 Mean-Field Approximation

Insight for the globally coupled case γ �= 0 can be obtained using the analytical
mean-field approximation in the absence of global coupling (γ = 0)

ut+1 = Bκ

(
3 − 9ut ,

1

2

)
+ utBκ

(
4 − 9ut ,

1

2

)
(11)

where it is considered that all cells have approximately the same average value ut ,
Eq. (4). The mean-field approximation provides a good description of the dynamics
when κ is sufficiently large and is away of the cellular automaton limit. Let

f (ut ; κ) := Bκ

(
3 − 9ut ,

1

2

)
+ utBκ

(
4 − 9ut ,

1

2

)
. (12)

Then, a homogeneous fixed point u∗ of Eq. (11) satisfies ut+1 = ut = u∗, that is,

u∗ = f (u∗; κ). (13)

There is a homogeneous fixed point u∗
norm ≈ 0 for every value of κ . In the cases

κ → 0 and κ → ∞, we have, exactly, u∗
norm = 0. For finite non-vanishing κ values,

the numerical solution of Eq. (13) shows that, in every case u∗
norm < 0.15. We call

this the normalized homogeneous state, since all cells are normal, non-cancerous
ones, at this fixed point.

Let ut = u∗
norm + ξt , where ξt is a small perturbation around the fixed point. The

evolution of the small perturbation is governed by the map

ξt+1 = d f (x; κ)

dx

∣∣∣∣
x=u∗

norm

ξt (14)

which is obtained by expanding Eq. (11) around u∗
norm in powers of ξ and retaining

only the first term. Clearly, the perturbation from the normalized homogeneous state
can only grow if

d f (x; κ)

dx

∣∣∣∣
x=u∗

norm

> 1. (15)

The mean-field approximation with global coupling is

ut+1 = f (ut ; κ) − γ ut , (16)

an equation that has fixed points u∗
γ given by

u∗
γ = f (u∗

γ ; κ)

1 + γ
. (17)
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As before, there is a normalized homogeneous fixed point u∗
γ,norm and linearization

of Eq. (16) around it yields, for a small perturbation,

ξt+1 =
[
d f (x; κ)

dx

∣∣∣∣
x=u∗

γ,norm

− γ

]
ξt . (18)

A perturbation can only grow if

d f (x; κ)

dx

∣∣∣∣
x=u∗

γ,norm

> 1 + γ (19)

where we see the stabilizing effect of the non-vanishing global coupling respect to
the γ = 0 case: The larger the value of γ the less likely condition (19) is satisfied
because d f (x; κ)/dx |x=u∗

γ,norm
≈ d f (x; κ)/dx |x=u∗

norm
.

2.4 Initial Conditions for Simulations

The lattice dynamics is studied using numerical simulations over a lattice with
159 × 159 = 25281 cells. We shall consider an initial condition consisting of a ran-
dom distribution of 0 and 1 values in a 25 × 25 central square region (Nab,0 = 123
abnormal cells), the rest of the lattice being at state 0.

3 Results and Discussion

3.1 Spatiotemporal Dynamics in the Absence of Global
Coupling (γ = 0)

To get insight in the full model with γ �= 0, we first study the model in the absence
of global coupling. For γ = 0 the model reduces toModel II discussed in our recent
work [10].

Figure1 shows the snapshots obtained for an inhomogeneous region occupying
initially a central cluster. If κ � 1.9 a homogeneous normal state is obtained at
long times. As κ is decreased, the central inhomogeneity can grow unboundedly.
Domain formation and oscillations are observed within the growing inhomogeneity.
The number of abnormal cells Nab grows until the whole lattice is occupied by
abnormal cells.

The dynamics of the model can be analyzed further using the mean field approxi-
mation in the absence of global coupling, Eq. (11). We describe next the bifurcation
diagram of Eq. (11) as κ is decreased from κ ≥ 2 to 0:
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Fig. 1 Spatiotemporal evolution of the cell states ui, jt obtained by iterating Eq. (5) in amulticellular
ensemble of 159 × 159 = 25281 cells for six different κ values. The initial (t = 0) state is the same
for all cases and consists of a random distribution of 0 and 1 values in a central square region of the
lattice of 25 × 25 size, the rest of the lattice being at state 0 [10]

• A bifurcation is encountered at κ ≈ 1.95, which is close to the value κ ≈ 1.9
found in the numerical simulations of the exact dynamics, Eq. (5). The system
abruptly splits into twobranches leading to the bistable regimeA (Fig. 2A).The two
states correspond to a homogeneous abnormal (upper branch) and normal (lower
branch) states. Remarkably, the systemwould tend to a normal homogeneous state
when κ → 0 only if the lower branch in Fig. 2A were followed, i.e., if the initial
conditions were always constituted by a majority of normal cells, with a tiny and
dilute proportion of abnormal cells.

• Abifurcation of the upper branch, representing the abnormal homogeneous state, is
found at κ ≈ 1.35 leading to two branches of abnormal states that perform period-
2 oscillations. Further period doubling bifurcations between abnormal states are
then observed at κ ≈ 1.2 leading through a period-doubling cascade into chaos
which is most prominent at κ = 1 (regime B in Fig. 2A). To substantiate this
observation, we calculated the Lyapunov exponent λ showing that it is positive
exactly in this regime [10] for initial conditions corresponding to an abnormal
homogeneous state.

• In regimes C and D of Fig. 2A, the mean-field approximation, Eq. (11), fails
because it can no longer be assumed that all neighborhoods are well described
by an average cell value. Equation (5) needs to be considered in these regimes.
Noise is high in regime C (see Fig. 1 for κ = 0.5) and more degrees of freedom are
involved here in the spatiotemporal dynamics invalidating the mean field approx-
imation.

The bifurcation diagram (Fig. 2) explains the pattern formation observed in Fig. 1
for 1 ≤ κ ≤ 1.9: the upper branch with bifurcations corresponds to the abnormal
region and the lower branch to the normal homogeneous region. The bifurcation
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Fig. 2 Bifurcation diagram calculated from the asymptotic behavior of Eq. (11) in the absence A
and in presence B of global coupling. The black curves correspond to stationary states u∞ obtained
at large times. The red points, following the branch of abnormal cell states, indicate the period
doubling bifurcation cascades into chaos. The yellow region in B correspond to states that can be
stabilized by means of a nonzero global coupling. These states (points marked) do not represent
homogeneous states but the coexistence of normal and abnormal phases so that the global average
value is u∞. This phase coexistence corresponds to tumours of a fixed volume in the long time limit
for initial conditions in which the abnormal cells are surrounded by a large homogeneous region of
normal cells. Increasing γ leads to a larger fraction of normal cells in the coexisting phases

diagram also clarifies why oscillations occur only in the region of abnormal cells.
Furthermore, as we see in the next section the bifurcation diagram allows to under-
stand the spatiotemporal dynamics of the multicellular ensemble in the presence of
a global coupling.

3.2 Spatiotemporal Dynamics in the Presence of Global
Coupling (γ > 0)

As mentioned above, if there is initially a bounded region of abnormal cells in the
lattice, the number of abnormal cells Nab grows indefinitely until the whole lattice
is filled with abnormal cells.

As we have explained in Sect. 2.2 the global coupling (0 < γ ≤ 1) tends to sta-
bilize a homogeneous state of normal cells. We now consider the introduction of a
global coupling to the multicellular ensemble, aided by the insights provided by the
bifurcation diagram in Fig. 2A.We note that the local spatiotemporal dynamics found
in absence of global coupling is not significantly altered by the global coupling if: (1)
themajority of the cells is in the normal state so thatut < 0.15; (2)γ is small. The con-
dition (1) is easily met if we consider initial conditions in which a tiny cluster of cells
in the abnormal state is initially present. For the initial conditions employed in the
simulations, we have that, at time t = 0, γ u0 = 123γ /25281 = 0.0049γ ≤ 0.0049,
which makes the contribution of the global coupling to the spatiotemporal dynamics
of the ensemble governed by Eq. (5) initially negligible.
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Regions containing abnormal cells can coexist in a stable manner with regions
containing only normal cells if a global coupling is added. When a global coupling is
introduced, points in the yellow-shaded region of the bifurcation diagram in Fig. 2B
can be stabilized in the long time limit. Points within the shaded region do not repre-
sent homogeneous states, but two-phase coexistence between regions of normal and
abnormal cells. The simulations in Fig. 3 for increasing γ lie in regime A in Fig. 2B
(four points shown). We have seen that in regime A there are two different stable
branches, the normal and abnormal branches. Depending on the initial condition, in
the absence of global coupling the trajectory is attracted to any of these branches.
If we introduce a nonzero global coupling, both branches can coexist, and there are
homogeneous regions in the lattice that can remain in the normal state and other
connected regions in the abnormal state. If we start from a small cluster of abnormal
cells surrounded by a homogeneous region of normal cells, we expect at initial times
a behavior similar to the one found in Fig. 1 for κ = 1.8 and γ = 0. However, the
growth of abnormal cells will stop if γ �= 0: the contribution to the local dynamics
due to the global coupling −γ ut grows and, for a sufficiently large contribution,
normal cells at the boundary of the tumour are stabilized, precluding the growth of
the latter.

In Fig. 3A the evolution of the number of abnormal cells Nab(t) is shown for
κ = 1.5 and the values of γ indicated on the curves. In Fig. 3B we show the results
obtained by Gompertz’s law

Nab(t) = Nab,0 exp

(
A

B
(1 − exp(−Bt))

)
(20)

for Nab,0 = 123 and A = 0.0211, B = 0.0047 (curve a), A = 0.0174, B = 0.0047
(curve b), A = 0.0140, B = 0.0044 (curve c) and A = 0.0096, B = 0.0035 (curve
d). Excellent agreement is obtained in all instances of the spatiotemporal evolution
of the model and Gompertz’s law.

The snapshots of the stable, stationary tumours obtained at time t = 2000 (Fig. 3C)
show that the homogeneous region of normal cells grows and the region of cancerous
cells shrinks when the global coupling strength increases. These tumours are like
those described in Ref. [9]: the cells within the tumour are necrotic and only the cells
at the perimeter of the tumour remain active. Regardless of the initial condition on a
bounded region in the lattice, the tumour grows to a spherical shape. Even when the
lattice is square and the underlying local dynamics is inherited fromConway’s Game
of Life, the smoothing parameter κ is responsible for a spatiotemporal evolution
that is characteristic of a partial differential equation rather than that of a cellular
automaton. As a consequence, isotropy is achieved.

The tumours reported in Ref. [8] behaved differently. Initially, the tumour quickly
grows to a size that remains approximately constantwhile its perimeter fluctuates. The
interior remains active for any long time even when the average number of abnormal
cells saturates to a constant value, and those abnormal cells remain in a connected
region of the same total area (disregarding small fluctuations). From the bifurcation
diagram, Fig. 2A, we observed that, in regime C, in absence of global coupling noise
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Fig. 3 Evolution of the number of abnormal cells Nab(t) on a lattice of � = 25281 cells. A
Results obtained from the model, Eq. (5), for κ = 1.5 and the values of γ indicated below the
curves, by using Eq. (3) to count the abnormal cells. B Results obtained by the Gompertz law,
Eq. (20) for Nab,0 = 123 and A = 0.0211, B = 0.0047 (curve a), A = 0.0174, B = 0.0047 (curve
b), A = 0.0140, B = 0.0044 (curve c) and A = 0.0096, B = 0.0035 (curve d). C Snapshots at
time t = 2000 of the stable, stationary tumours. This tumour behavior is similar to that reported in
Ref. [9].

is high in the branch of abnormal cells and the mean field approximation breaks
down: more degrees of freedom are needed to describe the branch of abnormal cells
that becomes essentially inhomogeneous. In Fig. 1 it is observed that for 0.3 ≤ κ ≤ 1
a cluster of active abnormal cells grows from an initial condition where only a few
cells are abnormal. The cluster of active abnormal cells against the homogeneous
region of normal cells grows until the whole lattice is filled in absence of global
coupling. For γ > 0 it is now possible to stabilize a significant part of the normal
region, leading to saturation of the tumour growth. Therefore, tumours like those
reported in Ref. [8] can be predicted by our model for κ parameter values in the
range 0.3 ≤ κ ≤ 1 and γ > 0. In Fig. 4 we show that κ = 0.9 and γ = 0.9 describe
a tumour growth behavior similar to that of Ref. [8].

In Fig. 5, the evolution of the number of abnormal cells Nab(t) is shown for
κ = 0.9 and the values of γ indicated on the curves. The black curves are the results
obtained from the model, Eq. (5). The red curves represent Gompertz’s law, Eq. (20)
for Nab,0 = 123 and A = 0.0458, B = 0.0105 (curve a), A = 0.0481, B = 0.0120
(curve b) and A = 0.0524, B = 0.0150 (curve c). Excellent agreement is obtained
in both instances of the averaged spatiotemporal evolution of the model and Gom-
pertz’s law. The snapshots of the stable, stationary tumours obtained at time t = 2000
(Fig. 5B) show that the homogeneous region of normal cells grows and the region of
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Fig. 4 Snapshots of the spatiotemporal evolution of the cell states obtained for κ = 0.9 and γ = 0.9
at the times indicated on the panels. The initial state is also shown. This tumour behavior is similar
to that reported in Ref. [8]

Fig. 5 Evolution of the number of abnormal cells Nab(t) on a lattice of� = 25281 cells.AResults
obtained from the model, Eq. (5), for κ = 0.9 and the values of γ indicated on the curves (black
curves). The red curves are the representations ofGompertz’s law,Eq. (20), for Nab,0 = 123 and A =
0.0458, B = 0.0105 (curve a), A = 0.0481, B = 0.0120 (curve b) and A = 0.0524, B = 0.0150
(curve c). B Snapshots of the tumours at time t = 2000. Although their interior is not stationary but
dynamical, the area occupied by the tumour is constant and remains connected

cancerous cells shrinks when the global coupling strength increases. These tumours
are like those described in Ref. [8]: not only the cells in the perimeter of the tumour
are active, but also those in the interior. The tumour grows up to a maximal size and
remains bounded, although the fluctuations of both the interior of the tumour and its
perimeter persist. This is the case, regardless of the initial condition on a bounded
region in the lattice.

For κ = 0.9 and increasing global coupling, γ = 0.4, 0.5, 0.6, 0.7, 0.8 and
0.9, the parameters A and B calculated by fitting Gompertzian curves, Eq. (20)
are obtained. A linear correlation with coefficient of determination R2 = 0.995 is
obtained between exp A and ln B, such that exp A ≈ 0.020 ln B + 1.138. We thus
observe that the parameters calculated for the Gompertzian curves that fit the results
from our model satisfy the linear correlation reported by Norton et al. [5] for exper-
imental biological instances of tumour growth (Fig. 6).
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Fig. 6 The parameters A and B of the Gompertzian curves fitting the spatiotemporal evolution of
the tumour dynamics predicted by the model, Eqs. (3) and (5) for κ = 0.9 and γ = 0.4, 0.5, 0.6,
0.7, 0.8 and 0.9 show an excellent agreement with the empirical relation found in Ref. [5], Eq. (2).
From these simulation results, the parameter values in Eq. (2) are determined as a = 0.020 ± 0.002
and b = 1.138 ± 0.008

Parameters a and b in Eq. (2) depend on the type of cancer under consideration.
In our model, these parameters exclusively depend on κ , a parameter which, as we
have seen, yields different types of tumours depending on the regime found in the
bifurcation diagram in Fig. 2.

Values of κ in the interval 1.35 ≤ κ ≤ 1.95 (regime A in Fig. 2), yields tumours
composed of necrotic, inactive cancerous cells like those found in Ref. [9]. Values
of κ in the range 1 ≤ κ ≤ 1.35 (regime B in Fig. 2) yield tumours bounded by a
circular shape as those in the interval 1.35 ≤ κ ≤ 1.95 but their interior is now active,
presenting coherent periodic oscillations in different domains of the tumour (1.18 ≤
κ ≤ 1.35) or chaotic, aperiodic behavior (1 ≤ κ ≤ 1.15). Values of κ in the interval
0.3 ≤ κ ≤ 1 (regime C in Fig. 2) yields tumours composed of active cancerous cells
like those found in Ref. [8]. The difference between these tumours and those found
in Regime B is that the perimeter of the tumour is not a circumference but a complex,
dynamically-changing, shape. Finally, values of κ in the range 0 ≤ κ ≤ 0.3 (regime
D in Fig. 2) correspond to the cellular automaton limit of the map and do not yield
connected tumours.

4 Conclusions

Acoupledmap lattice that simulates Gompertz tumour growth as an emergent behav-
ior has been presented. The model, Eq. (5), depends only on two free parameters,
κ and γ , that control the strengths of the intercellular and global couplings, respec-
tively. The model displays the correlations between parameters in the Gompertz
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tumour growth model [5], an important feature used in cancer diagnosis to pre-
dict long-time behavior from early stages of tumour development. Previous cellular
automata models [8, 9, 19] have not addressed these correlations and depend on a
larger number of parameters.

As the intercellular coupling parameter κ is varied, different types of tumours
are modelled. On one hand, for κ large, the model describes tumours that are only
active at the surface, the interior of the tumour being mostly composed of necrotic,
inactive cells [9]. These tumours, with homogeneous interior, are well described by
the mean-field approximation of the model, Eq. (11). As κ is lowered from κ = 1.35,
the degree of inner activity of the tumour can be switched from coherent and periodic
to aperiodic and chaotic. As κ is further lowered below κ = 1, more degrees of
freedom become active, the mean-field approximation, Eq. (11), breaks down, and
the model reproduces tumours that are active and noisy not only at its surface but
also in its interior [8]. On the contrary, previous models accounted only for one type
of tumour.

Growth inhibition and tumour volume saturation is described by a global cou-
pling that can represent the contribution of the mechanical pressure, limited amount
of nutrients, chemical inhibitors, etc. Importantly, the tumour growth is not here arti-
ficially constrained as in previous models in which the dynamics of the tumour was
made explicitly dependent on the radius or the volume of the tumour in an ad hoc
manner. Geometric features of the tumour do not enter in the model as explicit vari-
ables but arise as an emergent phenomenon as a consequence of the spatiotemporal
dynamics. This feature is important because, in contrast with previous approaches,
the tumour does not need to start ’at the center of the lattice’ but can start from any
other place. The model is translationally invariant: the local dynamics is the same in
every site of the lattice.

Compared to previous cellular automata models applied to tumour growth that
are all probabilistic, our model is deterministic and it is given by a simple map, Eq.
(5), that can be iterated on a lattice. However, in spite of being deterministic, our
coupled map lattice incorporates Conway’s Game of Life as a cellular automaton
limit (κ → 0) and, therefore, yields complex unpredictable behavior for arbitrary
initial conditions. Quite remarkably, for κ > 1 the model yields isotropic growth in
spite of taking place on a square lattice.

Gompertzian growth behavior has been found for all different kinds of tumour,
independently of the value of the parameter κ . Thus, our model suggests that Gom-
pertzian growth has a universal character, as pointed out by previous macroscopic
approaches [5, 7].
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Abstract This chapter presents the pinning control strategy applied to the p53-
Mdm2 regulatory network to achieve a target cellular response in cancer cells. The
network, regulated by p300 and HDAC1, is modeled by a system of 14 ordinary
differential equations. Based on this model, an oncogenic condition of Mdm2 over-
expression is derived and the functional suppression of p53 is simulated as one possi-
ble carcinogenic behavior. Then, control action is introduced to induce an increased
expression of p53 levels and downregulation of Mdm2 and p53 activation using only
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three controlled states (pinned nodes) of the network for the first case and two states
for the second case, respectively. The analytic results are simulated, which illustrate
the feasibility of the proposed control scheme.

Keywords Cancer · Complex network · Pinning control · p53 · Mdm2 · p300 ·
HDAC1

1 Introduction

Complex networks theory has been intensively investigated in interdisciplinary areas
such as systems biology, social science, engineering technology, among others [5, 7,
45, 57]. Complex networks theory is used as a quantitative method, mathematically
grounded in graph theory, to visualize and analyze complex systems. A complex
system is a set of dynamical agents interacting in a common environment, such that
system attributes that cannot be observed at the individual agent level.

Genetic regulatory networks can be modeled and analyzed from data produced
by experimental techniques and computational methods [66]. Nodes and edges form
these networks. Nodes usually represent genes, both coding (mRNA) and non-
coding (miRNAs, lncRNAs, etc.), or regulatory elements like enhancers, proteins,
molecules, etc. Edges represent various regulatory connections (activation, repres-
sion, modulation, etc.), and they can be weighted to describe the strengths of the
regulatory relationship (establishing regulatory properties) [14, 47].

The p53-Mdm2 (Mouse double minute 2 homolog) genetic regulatory network is
one of the most explored biological networks, which provides adequate information
for determining cell behavior in response to damage or stress. T P53 (p53) is an
essential regulatory gene that allows the cell to execute tasks such as cell cycle arrest,
DNA repair induction, senescence, or cell death [8, 61]. p53 is referred to as “the
guardian of the genome” due to its responses to different levels of stress, maintaining
genome stability by preventing mutation, and determining cell fate decisions, and is
one of the potential targets of antitumour therapy [28, 42, 64]. When cells present
irreparable defects, survival signals are inhibited, and the effector proteins of cell
fate promote cell death mechanisms [16]. If the mechanisms of response to DNA
damage are intact, the damaged cell will repair its DNA and avoid carcinogenesis. On
the other hand, cell death control can avoid passing damaged DNA to the following
cell generation [29]. Numerous antitumour strategies have been proposed in recent
years, including promoting and stimulating the antitumour activities of p53 and its
regulatory network, thereby inducing cell death [54]. Mdm2 has been identified as a
p53 interacting protein, which binds to p53 to induce protein-mediated degradation
by proteasome, leading to low p53 protein stability and resulting in decreased p53
levels. In consequence, p53 transcriptional activity is prevented [22, 28, 42]. In this
sense, the disruption of the protein-protein interaction between p53 and its negative
regulator Mdm2 comprises one of the most studied cancer therapy studies.
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In this chapter, a deterministic model published in [2], describing the p53-Mdm2
network regulated by p300 (acetyltransferase) and HDAC1 (deacetylase) under ion-
izing gamma-radiation, is adopted. Apart from a case of large p53 inactivation caused
by Mdm2 overexpression, which represses TP53 transactivation activity and medi-
ates p53 degradation as in [24, 44], a simple and effective control technique named
pinning control [12] is applied, which uses a small number of controllers to produce
global effects for network modulation. The task of the proposed scheme corresponds
to the carcinogenesis case characterized by MDM2 overexpression [46].

This chapter contributes to the ongoing research, where control methodologies
are applied to complex networks to regulate the system dynamics, targeting the
controllability of biological networks. The novelty lies in developing an effective
controller,which guaranteesmodulation in the p53-Mdm2network regulated byp300
and HDAC1, using a discontinuous feedback control law combined with pinning
control approach.

2 Methods

2.1 The p53-Mdm2 Genetic Regulatory Network

The p53-Mdm2 network illustrated in Fig. 1 coordinates a series of tumour sup-
pression activities in response to several stress-associated signals, resulting mainly
in the transcription of numerous genes involved in cell differentiation, cell cycle
arrest/senescence,DNA repair, and cell death (apoptosis). Under some circumstances
such as genotoxic damage, p53-mediated transcriptional regulation is activated to
promote behaviors like apoptosis response through Bax, Fas, PARP1, PAI, among
others. However, p53 also promotes the transcription of genes that can inhibit apop-
tosis, an opportunity to repair DNA damage and/or recover from stress (including
target genes such as p21, GADD45, PDDB2, among others).

The p53-Mdm2 network regulation exerts responses driven by p53 activation
and stabilization, genes transactivation, and function modulation mediated by post-
translational modifications. Epigenetic modifications also take part, through proteins
like histone and non-histone acetyltransferases (HATs and non-HATs, respectively).
p300 function as HAT in chromatin remodeling and as a transcriptional co-factor for
many proteins (p53, E2F, Rb, Smads, RUNX, and BRCA1), oncoproteins (such as
myb, jun, fos) and also transforming viral proteins (such as E1A, E6, and large T
antigen) [9]. HDAC1 is a deacetylase and acts as a co-repressor involved in differen-
tiation and proliferation control. It is upregulated in malignant compared to benign
tissue, and targets several transcription factors, including p53 [21].
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Fig. 1 Tumour suppressor activities regulated by p53. Signal transduction is represented by edges
(lines) and nodes (network element), where − � represents signaling inhibition, and → represents
signaling activation, Ac is acetylation, and p is phosphorylation

2.1.1 The p53-Mdm2 Network Regulated by p300 and HDAC1

The p53 activation in genotoxic stress is mediated through numerous protein inter-
actions and gene transactivation, which induces cell cycle arrest, DNA repair, senes-
cence, or cell death [55]. ATM (Ataxia Telangiectasia Mutated) protein has been
related to p53 phosphorylation in response to ionizing radiation, stabilizing and acti-
vating p53 [10]. The p300 binds to p53 and acts as co-activator for p53-mediated
transactivation and stabilization [20]. In response to DNA damage, p300-mediated
acetylation of p53 has been reported, forming a complex with Mdm2 and p53
[33]. Besides, Mdm2 recruits HDAC1, inhibiting p300-mediated acetylation of p53,
which promotes Mdm2-mediated p53 degradation [27]. The p53-Mdm2 interaction
is related to different cell damage stimuli, such as DNA damage, alterations suffered
by viral infections, among others [30, 34]. Finally, in non-genotoxic conditions, p53
is expressed at a very low level due to direct inhibition by negative regulator Mdm2,
which promotes p53 ubiquitination that leads to proteasomal degradation. In this
way, the p53-Mdm2 network regulates post-translational modifications as specific
responses mediated by genotoxic stressors [27].

In Fig. 2, the stress response model of the p53-Mdm2 network regulated by p300
and HDAC1 is presented. Under stress-free conditions, p53 remains at low levels,
due to Mdm2 inhibitory interaction (K8). Mdm2 mediates p53 ubiquitylation and
promotes degradation via proteasome (K7). The Mdm2-p53 complex can also disso-
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Fig. 2 Biochemical model of p53-Mdm2-p300-HDAC1 regulatory network. Nodes represent
chemical species and model parameters, edges establish functional interactions as activation or
inhibition, and Ub stands for ubiquination

ciate to Mdm2 and p53 with a constant rate (K9). Mdm2 and p300 have been shown
to form Mdm2-p300 complex (K20), which promotes p53 degradation mediated by
polyubiquitination (K1). Once genotoxic damage occurs, p53 stabilization is medi-
ated by ATM kinase activity (K10). ATM promotes p53 phosphorylation (K12) and
p53 reduces affinity for Mdm2, while p300 increase complex formation with p53
(K15) and p300 acetylates and stabilizes p53 (K16). Activated p53 has a half-life of
2h and promotes the transcription of numerous genes (K3), so they can be translated
into protein (K2), (K24), (K23), (K6). At the same time, synthesis (K23) and degrada-
tion (K14) of p300 occur at constant rates. A complex of Mdm2-p53-p300 is formed
at a particular time, where acetylation of p53 does not occur (K19). This ternary
complex can be dissociated (K21) once p53 phosphorylation occurs, thus the affinity
of contact with Mdm2 is reduced, and the dissociated p53-p300 complex activity is
strengthened. Transcriptional activity of p53 promotes Mdm2 synthesis, and Mdm2
recruits deacetylase HDAC1. In the nucleus, HDAC1 will form an inhibition com-
plex with Mdm2 (K18), meanwhile HDAC1 deacetylates p53 (K17), which promotes
Mdm2-mediated p53 degradation (K7), (K13). Once the proteins finish their function,
they will be sent to proteasome-mediated degradation for the case of HDAC1 (K22),
Mdm2 (K5), p53 (K1), and p300 (K14), respectively.
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2.2 Mathematical Description

Following [2], based on standard principles of mass-action law and biochemical
transcription kinetics, the behavior of p53-Mdm2 network regulated by p300 and
HDAC1 is mathematically described as follows:

ẋ1 = − k1x1x14 + k6 − k8x1x4 + k9x6 − k12x1x8 + k13x9 + k17x11x12, (1)

ẋ2 = − k14x2 − k15x2x9 − k19x6x2 − k20x4x2 + k23, (2)

ẋ3 = − k18x4x3 − k22x3 + k24, (3)

ẋ4 = k2x5 − k5x4 + k7x6 − k8x1x4 + k9x6 − k18x4x3 − k20x4x2 + k21x13, (4)

ẋ5 = k3x1 − k4x5, (5)

ẋ6 = − k7x6 + k8x1x4 − k9x6 − k19x6x2, (6)

ẋ7 = − k10x7 + k11x8, (7)

ẋ8 = k10x7 − k11x8 − k12x1x8, (8)

ẋ9 = k12x1x8 − k13x9 − k15x9x2, (9)

ẋ10 = k15x2x9 − k16x10 + k21x13, (10)

ẋ11 = k16x10 − k17x11x12, (11)

ẋ12 = − k17x11x12 + k18x4x3, (12)

ẋ13 = k19x6x2 − k21x13, (13)

ẋ14 = − k1x1x14 + k20x4x2, (14)

where x1 is p53 protein, x2 is p300 protein, x3 is HDAC1 protein, x4 is Mdm2
protein, x5 is Mdm2 messenger RNA, x6 is Mdm2-p53 complex, x7 is inactivated
ATM protein, x8 is activated ATM protein, x9 is phosphorylated p53 protein, x10 is
phosphorylated p53-p300 complex, x11 acetylated p53 protein, x12 isMdm2-HDAC1
complex, x13 isMdm2-p53with p300 complex, and x14 isMdm2with p300 complex.
The respective parameters are presented in Table1.

2.2.1 Characteristics of p53-Mdm2 Network Regulated by p300
and HDAC1

• The model (1)–(14) describes the core components of the p53 network that are
relevant to determining p53 dynamics in response to gamma radiation-induced
DNA damage. The mathematical model considers several parameters with non-
linear behaviors such as molecule production, degradation, translocation of net-
work components, complex formation rate, translation rate, phosphorylation, and
acetylation. Other genes/molecules regulations are ignored, gene mutations are
not considered, and constant molecule concentrations in the cell are assumed.

• For developing more detailed models, the incorporation of other proteins that
influence p53 activities is needed. The model here does not consider functional
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Table 1 Model parameters

Parameter Description Value

k1 p53 degradation 8.25 × 10−4/s

k2 Mdm2 creation 4.95 × 10−4/s

k3 Mdm2-mRNA creation 1.0 × 10−4/s

k4 Mdm2-mRNA degradation 1.0 × 10−4/s

k5 Mdm2 degradation 4.33 × 10−4/s

k6 p53 synthesis 0.078/s

k7 Mdm2-p53 degradation 8.25 × 10−4/s

k8 Mdm2-p53 synthesis 11.55 × 10−4/s

k9 Mdm2-p53 dissociation 11.55 × 10−6/s

k10 ATM activation 1.0 × 10−4/s

k11 ATM deactivation 5.0 × 10−4/s

k12 Phosphorylation of p53 5.0 × 10−4/s

k13 Dephosphorylation of p53 5.0 × 10−1/s

k14 p300 degradation 1.0 × 10−4/s

k15 p53-p300 formation 1.0 × 10−4/s

k16 Acetylation of p53 1.0 × 10−4/s

k17 Deacetylation of p53 1.0 × 10−5/s

k18 Creation of Mdm2-HDAC1 2.0 × 10−4/s

k19 Creation of Mdm2-p53-p300 5.0 × 10−4/s

k20 Formation of Mdm2-p300 5.0 × 10−4/s

k21 Dissociation of Mdm2-p53-p300 1.0 × 10−4/s

k22 Degradation of HDAC1 1.0 × 10−4/s

k23 p300 synthesis 0.08/s

k24 HDAC1 synthesis 2.0 × 10−4/s

disruption by gene mutations, nor other p53 post-translational modifications such
as sumoylation, external inhibitors, or altered ubiquitin-proteasome system.

• Likewise, this model does not include epigenetic regulation of gene expression
mediated by histonemodifications, whichmay alter the expression of genes depen-
dent or independent of p53.

2.3 Pinning Control Methodology

Amathematical model for gene regulatory networks is proposed by using the frame-
work of complex networks [5, 57]. Consider a general network consisting of N
non-identical nodes with nonlinear functional couplings, where each node is a scalar
dynamical system. The proposed network is defined as
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ẋi = fi (xi ) + gi (t, x1, x2, . . . , xN ), i = 1, 2, . . . , N , (15)

where xi ∈ R is the species (genes, proteins, mRNAs and others) in the network, i =
1, 2, . . . , N , fi : R �→ R represents the self-dynamics of node i related to individual
processes like proteins, the production or degradation process of RNA, and so on,
and gi : RN �→ R denotes the nonlinear coupling function between nodes, associated
with changes of xi due to translation, transcription, activation, inhibition or other
interaction processes.

To control (15) in a desirable manner for treatment or intervention purposes, the
control goal is to force (15) to track a reference trajectory given as

y = yr (t).

The above control objective is achieved by applying a small number of controllers
to the network, according to the pinning control technique [11, 39, 58] as follows.
Consider the first l nodes selected to be pinned. Thus, the controlled network can be
written as

ẋi = fi (xi ) + gi (t, x1, x2, . . . , xN ) + hi (xi )ui , i = 1, 2, . . . , l. (16)

ẋi = fi (xi ) + gi (t, x1, x2, . . . , xN ), i = l + 1, l + 2, . . . , N . (17)

where hi : R �→ R is a nonlinear function of the node state i , for i = 1, 2, . . . , l, and
ui denotes a local discontinuous feedback control law on the node i ∈ l described by

ui =
{

1 + Ki (1 − ei ), if |ϕi | < 1,
1 + Ki (1 − sign(ei )), if |ϕi | > 1,

(18)

where Ki is a positive control gain selected by the designer, ei is the tracking error
between the desired output trajectory (yr (t)) and the controlled state (xi ), given by

ei = (xi − yr (t)), (19)

with ϕi = ei
Si
being a designed auxiliary variable to reject chattering effect caused by

sign(·) (signum function extracts the sign of a real number) [56], and Si is a signal
filter given by

Ṡi = −αi Si + ωi , i = 1, 2, . . . , l, (20)

where αi and ωi are positive gains to be selected.
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2.4 p53, p300, and HDAC1 as Pinned Nodes

To select the pinned nodes, the virtual leader methodology presented in [36, 50]
is used. The methodology consists in analyzing the interactions between proteins
presented in Fig. 2, using the mathematical model ((1)–(14)). The nodes that directly
or indirectly affect every other node’s dynamical behaviors are candidates as pinned
nodes. For this purpose, the spanning tree of the p53-Mdm2 network regulated by
p300 and HDAC1 is identified, as shown in Fig. 3. Based on this analysis, p53, p300,
and HDAC1 are adequate biological selection as the pinned nodes.

From (1) to (3), the differential equations for p53, p300, and HDAC1 (pinned
nodes) are defined by cellular processes, respectively, as follows:

ẋ1 =
p53 degradation︷ ︸︸ ︷
−k1x1x14

p53 synthesis︷︸︸︷
+k6

Mdm2-p53 synthesis︷ ︸︸ ︷
−k8x1x4

Mdm2-p53 dissociation︷ ︸︸ ︷
+k9x6

p53 phosphorylation︷ ︸︸ ︷
−k12x1x8

p53 dephosphorylation︷ ︸︸ ︷
+k13x9

p53 deacetylation︷ ︸︸ ︷
+k17x11x12 ,

ẋ2 =
p300 degradation︷ ︸︸ ︷

−k14x2

p53-p300 complex︷ ︸︸ ︷
−k15x2x9

Mdm2-p53-p300 complex︷ ︸︸ ︷
−k19x6x2

Mdm2-p300 complex︷ ︸︸ ︷
−k20x4x2

p300 synthesis︷︸︸︷
+k23 ,

ẋ3 =
Mdm2-HDAC1 complex︷ ︸︸ ︷

−k18x4x3

HDAC1 degradation︷ ︸︸ ︷
−k22x3

HDAC1 synthesis︷︸︸︷
+k24 .

In order to control the p53-Mdm2 network, it is necessary to modulate the con-
centration of p53, p300, and HDAC1, to achieve an increased expression of p53
levels and induce p53 and Mdm2 downregulation. As can be seen, mathematically,
p53 degradation,Mdm2-p53 synthesis, p53 phosphorylation, p300 degradation, p53-
p300 complex, Mdm2-p53-p300 complex, Mdm2-p300 complex, Mdm2-HDAC1
complex, and HDAC1 degradation have a negative sign; while the synthesis process
has a positive sign. Due to this fact, it is proposed here to modify p53 production
(K6), p300 production (K23), and HDAC1 production (K24) processes by adding the
control law (18).

The equations of the pinned nodes p53 (x1), p300 (x2), and HDAC1 (x3) are

ẋ1 = − k1x1x14 + k6u1 − k8x1x4 + k9x6 − k12x1x8 + k13x9 + k17x11x12, (21)

ẋ2 = − k14x2 − k15x2x9 − k19x6x2 − k20x4x2 + k23u2 , (22)

ẋ3 = − k18x4x3 − k22x3 + k24u3 , (23)

ẋ4 = k2x5 − k5x4 + k7x6 − k8x1x4 + k9x6 − k18x4x3 − k20x4x2 + k21x13, (24)

ẋ5 = k3x1 − k4x5, (25)
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Fig. 3 Spanning tree of the p53-Mdm2 network regulated by p300 and HDAC1. In A states, which
are proteins and mRNA of the network, are presented. In B, based on the mathematical model
(1)–(14) and a biological analysis, states are illustrated with their dependent molecules. Finally, in
C, the spanning tree, where p53, p300, and HDAC1 do not have direct dependence (virtual leader)
from other states, is presented
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ẋ6 = − k7x6 + k8x1x4 − k9x6 − k19x6x2, (26)

ẋ7 = − k10x7 + k11x8, (27)

ẋ8 = k10x7 − k11x8 − k12x1x8, (28)

ẋ9 = k12x1x8 − k13x9 − k15x9x2, (29)

ẋ10 = k15x2x9 − k16x10 + k21x13, (30)

ẋ11 = k16x10 − k17x11x12, (31)

ẋ12 = − k17x11x12 + k18x4x3, (32)

ẋ13 = k19x6x2 − k21x13, (33)

ẋ14 = − k1x1x14 + k20x4x2. (34)

3 Results

Simulations are performedusingMatlab/Simulinkwith the fourth-orderRunge-Kutta
integration method and a fixed step-size of 1 × 10−3.

3.1 Behaviors of the p53-Mdm2 Genetic Regulatory Network
Without Control Action

3.1.1 The p53-Mdm2 Oscillation Response

Model (1)–(14) presents the oscillation response corresponding to an ionizing
gamma-radiation dose, simulated over 48h, using parameters in Table1. This
response is the normal behavior under radiation effect.Oscillation pattern is presented
in a period of 6.2h, as shown in Fig. 4. This response is due to post-translational mod-
ifications of p53 and the negative interactive loop of Mdm2-mediated ubiquitination,
according to [13, 18].

3.1.2 Mdm2 Overexpression and p53 Downregulation

Model (1)–(14) presents Mdm2 overexpression and p53 downregulation when
the following parameters are modified: k2 = 2.95 × 10−3/s, k7 = 8.25 × 10−5/s,
k8 = 11.55 × 10−5/s, k9 = 11.55 × 10−4/s, and k23 = 0.025/s. This case, illustrated
in Fig. 5, represents an oncogenic scenario, where Mdm2 overexpression suppresses
functions of p53 through an increase rate of degradation, leading to failure to geno-
toxic damage responses, which is validated in [19, 32, 46].
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Fig. 4 The p53 and Mdm2
oscillation response to
ionizing radiation damage

Fig. 5 Mdm2
overexpression and p53
downregulation

3.1.3 Increased Expression of p53 Levels

Model (1)–(14) presents an increased expression of p53 levels when the following
parameters are modified: k3 = 1 × 10−5/s, k4 = 1 × 10−3/s, and k23 = 0.8/s. The
p53 dynamical behavior presented in Fig. 6 is related to downstream genes involved
in signaling pathway, which can produce cell cycle arrest, DNA repair, senescence
and/or apoptotic response. Experimental evidence indicates that p53 level can dictate
the response of the cell, such that lower levels of p53 result in arrest, whereas higher
level results in apoptosis [3, 15, 23, 31, 48].

3.1.4 The p53 and Mdm2 Downregulation

Model (1)–(14) presents p53 and Mdm2 downregulation when the following param-
eters are modified: k1 = 1.25 × 10−6/s, k6 = 0.2/s, and k8 = 11.55 × 10−2/s. This
case represents null activity for both p53 andMdm2, as can be seen in Fig. 7, where a
pattern shows the knockout cell lines and mice models [38]. Some models have been
generated to explore the dependent and independent functional relationships and
regulation of p53-Mdm2 signaling in development, in tissue remodeling, in aging,
and in cancer [17].
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Fig. 6 Increased expression
of p53 levels response under
gamma-radiation induction

Fig. 7 The p53 and Mdm2
downregulation

3.2 Behaviors of the p53-Mdm2 Genetic Regulatory Network
with Control Action

This section illustrates the p53 and Mdm2 behavior under pinning control actions.
Two cases are considered: (1) to achieve an increased expression of p53 level, and (2)
to induce p53 and Mdm2 downregulation. For a 24h lapse, the network runs without
any control action, and presents Mdm2 overexpression and p53 downregulation as
carcinogenic initial behavior for both cases.

3.2.1 Case 1: Achievement of a p53 Level Increased Expression

Starting at 0h, the whole network runs without any control, and the system presents
Mdm2 overexpression and p53 downregulation as initial behavior. At 24h, the pro-
posed control law is injected; consequently, the system gradually tracks the increased
expression of p53 reference, as can be seen in Fig. 8A. Figure8B–D illustrate the
simulation results for the control input signals u1(t), u2(t), and u3(t) applied to the
pinned nodes.
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Fig. 8 Proposed scenario simulations to achieve p53 level increased expression in the p53-Mdm2
network regulated by p300 and HDAC1. In A, increased expression of p53 response under pinning
control (24–72h) is achieved. In B, control signal u1(t) applied in p53. In C, control signal u2(t)
applied in p300. Finally, in D, control signal u3(t) applied in HDAC1

3.2.2 Case 2: Induction of p53 and Mdm2 Downregulation

Starting at 0h, the whole network runs without any control, and the system presents
Mdm2 overexpression and p53 downregulation as initial behavior. At 24h, the pro-
posed control law is injected; consequently, the system gradually tracks the p53 and
Mdm2 downregulation references as can be seen in Fig. 9A. Throughout, u1(t) is
turn off as can be seen in Fig. 9B. Figure9C, D illustrate the simulation results for
the control input signals u2(t) and u3(t), applied to the pinned nodes.

4 Discussion

There are different strategies to combat cancer, for example inducing cytotoxicity,
genotoxicity, and activity modification at specific targets in a signaling pathway,
through either chemical agents, radiation, or genetic engineering. In cancer cells,
the genomic instability and mutations do not allow the tumour suppression func-
tion to perform. This also implies that each type of cancer has a group of different
abnormalities that may even be unique to cell clones within a single tumour.
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Fig. 9 Proposed scenario simulations to induce p53 and Mdm2 downregulation in the p53-Mdm2
network regulated by p300 and HDAC1. In A, p53 and Mdm2 downregulation response under
pinning control (24–72h) is achieved. In B, control signal u1(t) applied in p53 is turn off. In C,
control signal u2(t) applied in p300. Finally, in D, control signal u3(t) applied in HDAC1

Hence, to illustrate the applicability of the proposed pinning control, two cases
are studied on a deterministic network model corresponding to tumour suppressor
p53, Mdm2, HDAC1, and p300.

4.1 Behaviors Induced Without Control Action

4.1.1 The p53-Mdm2 Oscillation Response

In normal unstressed cells, p53 remains inactive and latent expressing low levels, due
to the targeted degradation by the protein E3 ubiquitin-protein ligase Mdm2 (from
MDM2 proto-oncogene). Mdm2 binds to p53 and marks it for proteasome degrada-
tion, preventing p53 accumulation in the nucleus and its transcriptional activities. It
is also known that in non-genotoxic conditions, p53 is rapidly degraded and is esti-
mated having a short half-life [43]. However, under cell stress in exposition to gamma
radiation, the genetic network induces a behavior compatible with an increase in the
number of damped pulses of p53, as demonstrated in [35]. Gamma radiation causes
many double-strand breaks (DSBs) in the DNA, which activates the p53-Mdm2 net-
work. Cells detecting non-repaired DSBs along time, restarting a new pulse of p53
activity. While the DNA damage is still present, pulses in the oscillatory behavior
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continue until DNA is successfully repaired, and the cell goes into senescence or cell
cycle arrest, or the cell could activate a program to die [35].

4.1.2 Mdm2 Overexpression and p53 Downregulation

Among the most important abnormalities that have been reported in cancer is the
functional inactivation of tumour suppressor genes mediated by the over-activation
of their negative regulators [32, 43, 46]. This is the case of Mdm2 overexpression,
which mediates the accelerated degradation of p53; thus, p53 will show a decreased
response to DNA damaging agents and, therefore, the loss of p53 tumour-suppressor
signaling outcomes and acceleration of tumour evolution [46]. OverexpressedMdm2
in human tumours has been reviewed in [49] for more than forty different types of
malignancies, including solid tumours, sarcomas, and leukemias.

4.1.3 Increased Expression of p53 Levels

The p53 progressive accumulation is mediated by p53 post-translational modifica-
tions and increased stability and transactivation [8, 15, 29, 33, 43]. The p53 co-
activation by p300 and ATM in a damage response could generate the activation
of downstream proteins. Increased expression of p53 levels allows the induction of
genes associated with cell fates, such as senescence or apoptosis [40]. According
to [60], full phosphorylation of p53 residues corresponds to severe DNA damage.
Along with p53 arrival and accumulation in mitochondria within 30min after radia-
tion stimuli, apoptosis is induced. In apoptotic response, mitochondrial p53 interacts
with Bak/Bax and starts a process for the mitochondrial outer membrane perme-
abilization, cytochrome C release, and caspase activation to complete the cell death
program.

4.1.4 The p53 and Mdm2 Downregulation

The level of p53 activity is autoregulated in cells due to the ability of p53 to induce the
expression of its inhibitor MDM2. However, in some stressful circumstances, other
proteins can regulate p53 and Mdm2 levels. This is the case for the activation of
stress-activated protein c-jun N-terminal kinase 1 (JNK) that can promote apoptosis
along or independent of p53 and decide cell fate in response to stress. JNK medi-
ates phosphorylation of p53 in U4 cells (model of normal colonocytes) exposed to
resembling digested fibers, induces p53 downregulation, not stabilization, and occurs
in the absence of Mdm2. Stressing colon epithelial cells with resembling digested
fibers induced activation of JNK and a rapid loss of p53. Targeted destruction of
p53 in intestinal epithelial cells may be part of an apoptotic program that controls
remodeling tissue of intestinal crypt column in vivo [62].
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Also, in another study, p53 downregulation was observed in cells infected by
some viruses that induce apoptosis, limiting viral replication. More evidence for the
role of p53 pathways in viral defense is complex and is mediated by interplay with
other regulators [41]. This evidence broadens the possibilities of regulation of the
p53-Mdm2 network and its outcomes.

4.2 Behaviors Induced by the Pinning Control Technique

The different types of cellular abnormalities in tumours require multiple strategies
to combat carcinogenesis. A good scenario would be to know these abnormalities in
advance before applying treatment to customize the strategy. Reversing carcinogenic
behaviors can be accomplished theoretically, stirring a genetic network’s dynamics,
applying control techniques in a gene regulatory model network [59]. The more
significant details are known about regulating a normal and altered cellular regulatory
network, the more precision the mathematical models will acquire to simulate a
cancer process’s conditions. They will be a valuable support in the design of new
anticancer therapies.

In the model (1)–(14), key regulators in the p53-Mdm2 network are presented
as pinned nodes, p53, p300, and HDAC1, which accomplish control objectives on
the network. In this sense, tumour suppressor activity of p53 is carried out primarily
as a transcriptional factor, through post-translational modifications, which include
phosphorylation and acetylation, allowing p53 stability and activating its transcrip-
tional functions. Interestingly, the balance between acetylation and deacetylation is
critical during gene transcription, and disruption of this balance can alter the cell
cycle-promoting activities or its inhibition and other cellular functions [65].

4.2.1 Case 1: Achievement of a p53 Level Increased Expression

The control law (18) is added at the production of p53, p300, and HDAC1 nodes,
which yields an increased p53 level expression and stabilization through post-
translational modifications and increased transactivation. For the oncogenic scenario
of overexpressed Mdm2, it is possible to generate p53 progressive accumulation,
which is assumed to be activated by a mechanism linked to post-radiation activation
of the ATM/ATR pathway, and p53-dependent and independent induction of down-
stream proteins [6]. ATM activation promotes p53 phosphorylation that reduces the
affinity for Mdm2 [51] and allows p53 to interact with other co-activators such as
p300, forming a complex. The p53-p300 complex causes p53 acetylation at specific
lysine residues that are common for both acetylation and ubiquitination [26, 52].
Acetylation of lysine residues inhibits ubiquitination mediated by the interaction
with Mdm2-HDAC1 complex [27, 37], allowing p53 levels to increase. Sustainment
of elevated p53 protein allows the induction of genes associated with terminal fates,
such as senescence or apoptosis [40]. With respect to sustained p53 levels, exper-
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imental evidence shows proliferation suppression of MCF-7 dividing cells under
radiation stimuli, and also some p53 target genes correlate with p53 protein levels
such as p21, GADD45A, Mdm2, PPM1D at first 24h post-radiation stimuli. Post-
translational modifications of p53 through different cofactors bind p53 to affect the
choice of downstream gene programs [55, 61]. It seems that levels of p53 activation,
time of stimulus, and damage type, are all important factors to cell fate decisions
according to [48].

The p300 as a pinned node regulates a series of functions in the p53-Mdm2 genetic
network model, among which it stands out the acetyltransferase activity in p53 to
mediate transcription of target genes in response to DNA damage. After DNA dam-
age, p300 participates in the activation of p53 mediated by acetylation [26], along
with phosphorylation by the action of various kinases such as ATM [51]. ATMmedi-
ates phosphorylation at multiple p53 sites, including Ser46, in response to ionizing
radiation. At the same time, p53 is activated by p300. The latter increases the stability
of the formation of the p53-DNA-p300 complex. The p300 stimulates the transcrip-
tional activity of p53 on p53-regulated promoters, and it enhances the responsiveness
to a physiological upstream modulator of the p53 function, for example, under ion-
izing radiation stimuli [4]. Besides, p300 can modulate the p53 network activities
at other levels, such as at the epigenetic level, by regulating the acetylation of tar-
get histone proteins (epigenetic modifications not included in this model). There is
evidence that, if p300 were inactive, it would promote a failure in the activation of
p53 and its responses, with the consequence of a failure in the execution of apopto-
sis due to DNA damage. The p300 functions as a versatile signal integrator of many
transcription factors to facilitate transcriptional activation or repression, andmultiple
transduction pathways.

Finally, HDAC1 as a pinned node belongs to an enzyme family known as deacety-
lases that work as transcriptional co-activators to contribute to the balance between
acetylation and deacetylation in regulating gene expression, which is thus linked
to the control of cell fate. Further, it has been observed that p53 acetylation is a
reversible process, and for it, Mdm2 recruits HDAC1 to form an Mdm2-HDAC1
complex, which deacetylates p53 [27]. In this sense, HDAC1 also has an important
regulatory role in response to genotoxic damage.HDAC1 interactswithMdm2, form-
ing a complex and promoting p53 deacetylation and playing a role in DNA damage
response through direct interactionwith FUS (Fused-in-Sarcoma), amulti-functional
ribonucleoprotein expressed in the nucleus. FUS participates in the maintenance of
genome stability and DNA repair. FUS and HDAC1 interact and are required for
DSB’s repair, genome stability maintenance, and neurons survival [63].

4.2.2 Case 2: Induction of p53 and Mdm2 Downregulation

The p53-Mdm2 network has regulations mediated by other proteins to induce tis-
sue remodeling or protection against viral infections. In these types of stressors,
p53 has been seen to be downregulated or inactivated, as already been noted in
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Sect. 4.1.4. This network executes different types of regulation in response to the dif-
ferential choice of downstream gene programs. The p53 post-translational regulation
contributes to cell program choice, especially phosphorylation, dephosphorylation,
acetylation, and deacetylation.

As a regulator of a tumour-suppression mechanism, HDAC1 plays a role in senes-
cence activation, while overexpressed in cervical cancer cells and contributes to
decreased cellular proliferation. HDAC1 overexpression has been reported having
increased levels of interaction in deacetylated Sp1 (Sp1 transcription factor) with
p300, leading to the expression of PP2AC (phosphatase 2A subunit). Also, PP2Ac
co-regulate senescence induction with active hypophosphorylated pRb (retinoblas-
toma protein) [1]. Inactive phosphorylated pRb is one of the participants in cell-cycle
progression regulation through cyclin-dependent kinases (CDKs) under mitogenic
stimuli [25].

Moreover, it was reported in [53] that the knock-down model of HDAC1 and
HDAC2 accelerates the preleukemic state along with p53 deletion in transgenic
preleukemic mice. In contrast, in the preleukemic phase of acute promyelocytic
leukemia (APL), HDAC1 counteracts PML-RAR oncogenic fusion activities. In this
scenario, HDAC1 blocks differentiation, impairs genomic stability and increases
self-renewal in hematopoietic progenitors. Remarkably, short-term treatment of
preleukemic mice with an HDAC inhibitor accelerates leukemogenesis. Neverthe-
less, in the knock-down of HDAC1 in APL mice, the leukemic animals enhance the
survival duration. Thus, HDAC1 has a dual role in tumorigenesis: oncosuppressive
in the early stages, and oncogenic in established tumour cells.

Additionally, the dual function of HDAC1 was also observed in young and old
livers in association with different protein complexes. The in vitro and in vivo results
suggest a model, where high levels of HDAC1, in association with chromatin remod-
elers and tissue-specific factors, promote an ever-changing chromatin structure, lead-
ing to failure of growth-promoting gene activation and aging [65].

Activation and stabilization of p53 depend on p300 activities. In this sense, p300
C/H1 region is a specific binding site for p53 andMdm2.Moreover,Mdm2also bound
to p300 such that interactions of p53-Mdm2-p300 participate in p53 degradation
mediated by Mdm2. Taken together, complex interactions between p53 and its co-
regulators are involved in controlling p53 response [19].

The multiple effects of stirring the dynamics of the p53-Mdm2 network and other
regulators must be carefully weighted to estimate the effects on downstream depen-
dent pathways and its consequence on cell fates. Therefore, induced senescence,
cell cycle arrest, or apoptosis by p300, HDAC1 and/or p53 modulation may be an
effective approach to developing new alternatives for functional studies in tumours
and the study of new therapies in cancer.
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5 Conclusions

This chapter presents a control strategy to regulate cellular response in cancer in
the p53-Mdm2 genetic regulatory network, based on pinning control techniques. To
select pinned nodes, virtual leader methodology is applied. To illustrate the p53 and
Mdm2 protein modulation under pinning control, two cases are considered. In the
first case, to achieve a p53 level increased expression, the control action (u1(t), u2(t)
and u3(t) ∈ R) is applied to p53, p300 and HDAC1 respectively, as show in Eqs.
(21)–(23). In the second case, to induce p53 and Mdm2 downregulation, the control
action u1(t) is turn off, u2(t) is applied in p300, and u3(t) is applied in HDAC1. From
the above results, it can be clearly seen that the pinning controllers achieve regula-
tion successfully for the p53-Mdm2 network regulated by p300 and HDAC1. The
benefits from analysis of accurate gene regulatory networkmodels for medicine, sys-
tem biology, and biotechnology, provide a strong incentive for cooperation between
experimentalists, control engineering, and computational scientists.
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Heterogeneous Tumour Modeling Using
PhysiCell and Its Implications
in Precision Medicine

Miloš Savić, Vladimir Kurbalija, Igor Balaz, and Mirjana Ivanović

1 Introduction

1.1 Precision Medicine—General Introduction

In modern society, with the constantly growing economy and demanding working
and living conditions, a large portion of the population is facing stressful life that
triggers chronic health problems like cancer, cardiovascular or neurological diseases.
Such a situation requires a shift in healthcare towards more interdisciplinary, multi-
disciplinary, and holistic initiatives [6, 38].

Accordingly, the importance of the development of appropriate services to
improve the quality of life of persons who suffers from chronic diseases has been
widely recognized. For that, the collection of huge amounts of patients’ complex
data (like clinical, environmental, nutritional, everyday activities…) is needed. It
is necessary to properly aggregate such data, analyze it and present it to the clini-
cal doctors and caregivers so they can devise better recommendations for adequate
treatment and actions to improve patient’s health.

This approach is the essence of the emerging research called personalized
medicine or precision medicine. According to the US National Research Coun-
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cil, “personalized medicine” is an older term with a similar meaning as “precision
medicine.” However, the term “personalized” could be misunderstood to imply that
medical treatments are being developed uniquely for each individual.

According to the Precision Medicine Initiative [15], precision medicine is “an
emerging approach for disease treatment and prevention that takes into account
individual variability in genes, environment, and lifestyle for each person.” Pre-
cision medicine, where an individual patient’s molecular information is processed,
also can be an adequate way to try to recognize different risk factors and help in
the prevention of critical diseases like cancer [20]. Regardless of the scope of data
included in consideration, the main characteristic of the approach is to obtain a more
accurate prediction of which treatment and prevention strategies will have the best
results for which groups of patients. It has the potential to improve the traditional
symptom-driven and one-size-fits-all approach allowing earlier medical diagnostics,
interventions, and tailoring better and economically personalized treatments.

Additionally in the last several decades, we are facing enormous production of
biological data that causes a paradigm shift in medical research. Technological sup-
port to studymolecular changes over thewhole genome brings new dimensions to the
concept of precision medicine. Such a comprehensive approach supported by pow-
erful ICT tools and methods raised hope for the development of superior diagnostic
and therapeutic instruments. This is especially relevant to cancer as its incidence is
globally increasing.

Regardless of the promised theoretical benefits of precision medicine, its role in
day-to-day healthcare is still relatively limited. However, given the enormous techno-
logical development and rapid research actions in a lot of medical-related disciplines,
the expectations are that this approach will expand in medical and healthcare areas
in the coming years.

1.2 Treatment Approaches in Precision Medicine

Cancer treatment options are numerous. From traditional chemotherapywhere chem-
icals are used to kill fast-growing cells (both cancerous and non-cancerous) to more
precise treatments such as hormone therapy, immunotherapy and targeted therapy.
All of these more precise treatments rely on performing tumour analysis for patient-
specific biomarkers (genes, proteins and other tumour markers). A closely related
field is Pharmacogenomics. It is still in its infancy but its main focus is on discovering
how genes affect a person’s response to specific drugs. Pharmacogenomics combines
the science of drugs and genomics to try to develop effective but safe medications
and propose adequate doses that are tailored to variations in a person’s genes. Expec-
tations of this approach are very optimistic for the development of tailored drugs to
treat serious health problems like cancer [20], cardiovascular disease [3], and so on.

In cancer research, there are several approaches to identifying appropriatemolecu-
lar targets. One approach is to identify overexpressed proteins. The very first targeted
therapy, tamoxifen, made in 1962, has been developed to inhibit the growth of estro-
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gen receptor-positive (ER+) breast cancer cells [16]. The second breakthrough hap-
pened also by identifying overexpressed proteins - Human Epidermal Growth Factor
receptor 2 (HER-2). HER-2 positive tumours are sensitive to the inhibition of Her2
receptor function and to date, a large number of therapies has been developed. They
include monoclonal antibodies (trastuzumab, pertuzumab, margetuximab-cmkb),
antibody-drug conjugates (different conjugates with trastuzumab), pan-her inhibitors
(neratinib), signal transduction inhibitors (lapatinib) and tyrosine-kinase inhibitors
(tucatinib).

Another approach is to determine whether cancer cells produce mutant proteins
that drive cancer progression. An example is the cell growth signalling proteinBRAF,
which is inmanymelanomas presented in altered form, BRAFV600E. Inhibitor of B-
Raf enzyme,Vemurafenib, has been approved in 2011 to treat patientswith inoperable
or metastatic melanoma that contains mutated BRAF protein. Currently, several
clinical trials investigate possibilities of combined treatments to further improve the
prognosis of patients with BRAFV600E mutation [24].

Yet another approach is to search for chromosome instabilities (CIN) that are
present in cancer cells but not in normal cells [35]. Such instabilities are defined
as an increase in the rate at which whole chromosomes or chromosomal fragments
are gained or lost, typically resulting in aneuploidy or abnormal DNA content. Such
changes have been observed in many cancers but are best understood in colorectal
cancer [5, 21]. Two main strategies for targeting CIN in cancer are CIN-reducing
and CIN-inducing approaches. The CIN-reducing approach aims to reduce the rate
of CIN (by inhibiting abnormal processes), while the CIN-inducing approach aims
to increase the level of chromosome missegregation and/or DNA damage to induce
cell death [1].

1.3 The Role of Microenvironment in the Future
Development of Precision Medicine

All the approaches described above are focused on searching for single-cell-level
targets. When successful, they enable precise targeting of specific cancer pheno-
type/genotype thus increasing treatment efficacy and making them less harmful for a
patient. However, the main limiting factor of targeting dominant tumour cells only, is
the high probability of developing drug resistance. It has been shown that the tumour
microenvironment plays a major role in rapidly inducing drug resistance via a cas-
cade of signalling events that transiently protect tumour cells from apoptosis induced
by therapeutic chemicals [25]. The tumour microenvironment is a spatially and func-
tionally complex network of the vasculature, stromal cells, Cancer StemCells (CSC),
cancer-associated fibroblasts (CAF), and tumour-associated macrophages (TAM). In
the following paragraphs, we will briefly outline each of the main microenvironment
constituents and highlight their importance in determining the clinical outcome of
treatment and the development of treatment resistance.
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To have a lasting effect a drug should reach close to 100% of tumour cells [8]. To
achieve that, once it leaves blood vessels a drug should penetrate as far as possible
through a tumour tissue [33, 34]. Diffusion depth depends on both the chemical prop-
erties of a drug and microenvironment properties (density of extracellular matrix,
tissue pressure, interstitial fluid pressure). Moreover, tissue oxygenation strongly
affects the response of tumour cells to an applied drug [41]. The maximum diffu-
sion distance of oxygen from blood vessels is about 100 microns and cell necrosis is
observable at distances of 150microns or more from the areas supplied by blood ves-
sels [37]. Therefore, vasculature density is strongly associatedwith clinical outcomes
in a number of cancers [14, 17, 30].

Cancer stem cells (CSC) have been increasingly recognized as themain reason for
tumour relapse andmetastasis [26]. This tumour cell subpopulation is more resistant
than differentiated cancer cells to most of the conventional anticancer therapies,
antimitotic agents, or radiation. They also can differentiate into tumour cells of
various phenotypes and are regulated by a variety of processes including Notch,
Hedgehog, NF-kB, Wnt and TGF-beta pathways [9].

CAFs maintain the structural framework of a tumour and, in contrast to normal
fibroblasts, have increased proliferation, enhanced extracellular matrix production
and unique cytokine secretion [27]. By secreting a variety of active factors, they
modulate cancer metastasis through synthesis and remodelling of the extracellu-
lar matrix (ECM), and influence angiogenesis, tumour mechanics, drug access and
therapy responses [28]. Like other elements of the tumour microenvironment, CAF
number and function strongly influence treatment outcomes [2, 13].

TAM’s promotion of resistance is mainly due to the secretion of a variety of
cytokines that induce anti-apoptotic programs in cancer cells and stimulate tumour
cell proliferation [4]. Also, activated TAMs promote metastasis by producing soluble
factors [40] and can release the angiogenicmolecules and express a series of enzymes
involved in the regulation of angiogenesis [4].

1.4 Modelling in Precision Medicine

Mathematical and computational modeling and simulations are getting more and
more important in natural sciences and medical domains. The main aim is to develop
and use different efficient algorithms, data structures, and visualization techniques
for user-friendly and explainable communication tools for human-computer interac-
tion. Being based on different mathematical theories and applications of ICT tools,
approaches to models can take different routes, like dynamical, statistical, differen-
tial equations, game-theoretic, and so on. However, sometimes it is difficult to make
a clear classification especially when modeling approaches overlap or combine pro-
ducing a variety of models/systems/tools. Computer modeling and simulation of
biological and medical systems encompass works with cellular subsystems, com-
prehensive data analyses, 2-D and 3-D visualization of the complex connections of
cellular processes, and so on.
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In this chapter, the focus is on tumour and drug design. Tumours are heteroge-
neous cellular entities, and their growth is influenced by changing microenvironment
and dynamical interactions between cancerous and healthy cells. Such interactions
influence changes in cell phenotypic behaviors, like proliferation, apoptosis, and
migration. To obtain reliable experimental results (in spite of the fact that it enor-
mously increases computational complexity) it is necessary to consider different
spatial and temporal scales. Until recently most computational tumour models were
focused on scale-specific models. As tumour growth span multiple scales, it is neces-
sary to apply another computational approach and include modeling across different
biological scales (like some of the biological spatial scales: atomic,molecular,micro-
scopic (tissue/multicellular), and macroscopic (organ) scales). Usually, a model is
considered multiscalar if considers at least two spatial scales and/or includes pro-
cesseswith at least two temporal scales.“Simulating cancer behavior across multiple
biological scales in space and time is increasingly being recognized as a powerful
tool to refine hypotheses, focus experiments, and enable more accurate predictions.”
[7].

There is still no clear and specific classification of multiscale models, but since in
this chapter we are concentrated on tumour and drug design, we will briefly consider
several types of models appropriate for cancer diseases according to [7].

Discrete (individual-based) modeling is based on defining a set of rules for each
cell. Individual cells are represented in space and time and the simulation process
tracks and updates their internal states. Discretemodeling is an adequate approach for
studying carcinogenesis, genetic instability, and cell-cell and cell-matrix interactions.

For modeling larger-scale systems, a better solution is the approach where tumour
tissue is presented as a continuummedium instead of individual cells. This approach
is known as continuum modeling (population-based) because model variables (like
cell volume fractions, nutrient, oxygen, growth factors) are described as continuous
fields usually using PDE equations. However, suchmodels cannot be used to examine
individual cell dynamics and discrete events.

An approach that can mitigate shortcomings of both continuous and discrete
approaches is so-called hybrid modeling. This approach assumes the coupling of a
continuous model with a discrete one. Hybrid modeling assumes integration and the
strengths of both continuum and discrete models i.e. it assumes interaction or cou-
pling between at least two models not based on the same formalism. Such models
can couple biological phenomena from the molecular and cellular scales to those
at the tumour scale. There are different definitions of hybrid modeling but gener-
ally speaking, two categories can be distinguished: composite and adaptive hybrid
modeling [7]. Applications of hybrid models are numerous like: biological networks
modeling, cancer growth modeling, cancer immunology and so on [32].

A tumour is in dynamic communication with the microenvironment (that shapes
the cell-level behavior) through biochemical and biophysical processes. Therefore,
the growth of tumour cannot be observed as an isolated process. It must be consid-
ered as an integral part of a dynamical biochemical and biophysical environment
i.e. as a 3-D multicellular system [23]. According to [23] to model and perform
simulations for different aspects of cancer, a 3-D multicellular simulation platform
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should “simulate the birth, death, and motion of tumour cells; simulate biochemical
microenvironments with multiple diffusing substrates; simulate the biomechanics of
cells and the extracellular matrix; simulate the evolving blood vasculature; simulate
interstitial andmicrovascular flow; integrate the abovemodels, alongwithmolecular-
scale models to drive cell phenotype; integrate high-throughput experimental data to
calibrate and validate models; do so reproducibly, using interoperable data formats”.

A recent and very important trend in modeling and simulation in medical domains
is oriented towards a specific field in precision medicine, pharmacometrics. To opti-
mize the treatment regimens and the design of clinical trials, personalized phar-
macokinetic/pharmacodynamic (PK/PD) modeling and simulations are utilized. In
pharmacokinetic the goal is to find out the relation between doses and concentration
while the goal of pharmacodynamic is to find out the relation between concentration
and effects that produce for an individual patient. Multimodel approaches are also
very welcomed in this area where several models are simultaneously fitted predom-
inantly based on how well they fit the data [10].

Some researchers have gone a step ahead in pharmacometrics technology includ-
ing Pharmacokinetic-Pharmacodynamic/Toxicodynamic (PK-PD/TD)modeling and
simulation [19]. They also work on interactions between antiemetic and anticancer
drugs in order to achieve an appropriate dosing scheme and a good balance between
maximum drug efficacy and minimum toxicity for individual patients. Mentioned
approaches are based on inter and multidisciplinary methods that, in addition to
pharmacometrics also include biomathematics, pharmacology, and several ICT dis-
ciplines with expectations to evaluate the effect of individual patient factors on drug
exposure and different doses of drugs.

In this chapter, we present the results of experiments performed using EvoNano
PhysiCell that represents the extended version of PhysiCell system. Original Physi-
Cell system [12] is a physics-based 3-D multicellular systems simulator realized
as a general-purpose toolkit. Multicellular systems are used in different domains
including cancer (metastasis, growth, drug design for tumour cells). To achieve good
results during simulation it is important to observe how individual cells grow, divide,
interact, move, and die. Tissue-scale dynamics should be studied in the microenvi-
ronment as usually cells are affected by biochemical and biophysical signals. So,
reliable simulation for multicellular systems should include: tissue microenviron-
ments (the “stage”) with multiple diffusing chemical signals (oxygen, drugs, and
so on); and the dynamics tissue microenvironments i.e. many interacting cells (the
“players” upon the stage). It builds upon a multi-substrate biotransport solver to
link cell phenotype to multiple diffusing substrates and signaling factors. It includes
biologically-driven sub-models for cell cycling, apoptosis, necrosis, solid and fluid
volume changes, mechanics, and motility “out of the box” [12].

PhysiCell is a powerful framework realized in a modular manner allowing a wide
range of users to extend, rewrite, or even replace its originally implemented functions.
The system also has been parallelized and supports the dynamics and interactions of
even millions of cells in 3-D microenvironments, with microenvironment-dependent
phenotypes.
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2 PhysiCell Based Simulator for Precision Medicine

This section will give an overview of new concepts introduced in the original Physi-
Cell which are required for a high-quality precision medicine simulation. These con-
cepts include several types of cells involved in the simulation (cancer cells, cancer
stem cells, healthy cells, vascular cells, and cancer-associated fibroblast (CAF) cells)
and several substrates which are added into PhysiCell microenvironment (angiogenic
factor, prostaglandin, cytokine, drug substrate). The first subsection will give a high-
level overview of these concepts by providing explanations about processes that
take place in the simulation and by explaining all necessary parameters. The second
subsection will provide low-level overview with important implementation details.

2.1 Functionalities and Features

This section will provide an overview of introduced cell types and substrates in the
order in which they are implemented. This is important since some later concepts
require the presence of particular initial concepts.
Cancer and cancer stem cells
Cancer stem cells (CSC) are the first types of cells introduced in EvoNano Physi-
Cell extension. Together with Differentiated cancer cells (DCC) they are the main
representatives of the potential tumour tissue. These two cell types share common
behaviour, while some parameters (e.g. for apoptosis, necrosis, division) are dif-
ferent. CSCs are generally considered more resistant regarding death rate, division,
resistance to drugs, etc.

DCC are part of the original PhysiCell simulator and they are always simu-
lated in our simulator, while the simulation of CSC is controlled through parameter
cancer_stem_cells_enabled of the Boolean type. The initial number of
DCCs in the simulation is given in the parameter random_cancer_cells. The
general behaviour of these cells is controlled through several simulation parameters:

• random_cancer_cellswhich defines the number of DCCs in the initial sim-
ulation set-up.

• cancer_cell_persistence_time and cancer_stem_cell_
persistence__time define the persistence time for DCCs and CSCs respec-
tively. For both cell types, this value is set to 15 minutes.

• cancer_cell_migration_speed and cancer_stem_cell_
migration_speed define the migration velocity for DCCs and CSCs respec-
tively. For both cell types, this value is set to 0.25 micrometers per minute.

• cancer_cell_relative_adhesion and cancer_stem_cell_
relative_adhesion define the value of relative adhesion forDCCs andCSCs
respesctively. This value is interpreted as the force for resistance to deformation
and/or volume exclusion [29]. For both cell types, this parameter value is set to
0.05 (dimensionless).
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• cancer_cell_apoptosis_rate and cancer_stem_cell_
apoptosis_rate define the rate for entering the cell into apoptosis (pro-
grammed cell death). The probability of entering in the apoptosis death state is
proportional to this parameter and to the delta time [12]. CSC dies very rarely
at least via apoptosis death model, so the value of this parameter is set to zero
(1/minute). The value for DCC is set to 4.065e-5.

The process of DCC and CSC division is more complicated and it is controlled
through several parameters which will be described below. One DCC can be divided
into two DCCs or into one DCC and one CSC (with some probability). One CSC can
be divided into: two CSC, two DCC, and one CSC and one DCC (all outcomes with
defined probability). This process of division is controlled through the following
simulation parameters:

• cancer_cell_division_rate andcancer_stem_cell_division_
rate define the division rate for DCCs and CSCs respectively. This value for both
types of cells is set to 0.005 (dimensionless).

• CSC_probability_CC_division defines the probability for making one
CSC in DCC division. This probability is set to value 0.05 (5%). Consequently,
one DCC will be divided in two DCCs in 95% of cases.

• symmetric_division_probability defines the probability of splitting
one CSC into two cells of the same type (two DCC or two CSC). This value is set
to to 0.01 (1%) so in 99% of divisions one CSC will be divided in one DCC and
one CSC.

• symmetric_division_double_CC_probability defines the probabil-
ity of dividing one CSC into two DCCs when symmetric division is selected (pre-
vious item). This value is set to 0.01 (1%) so in 99% of symmetric divisions one
CSC will be divided into two CSCs. Since the probability of symmetric division
is 1%, and that under these circumstances the probability of creating two DCCs
from one CSC is 1%, overall the probability of creating two DCCs from one CSC
is just 0.01%.

The parameters cancer_stem_cell_o2_necrosis_threshold and
cancer_stem_cell_o2_necrosis_max are defined only for the CSCs, and
they are used to simulate higher resistance of CSCs to the lack of oxygen and for the
entering necrosis process. When the level of oxygen is lower than o2_necrosis_
max (PhysiCell parameter) the cell immediately becomes necrotic.When the level of
oxigen is between o2_necrosis_max and o2_necrosis_threshold (also
PhysiCell parameter) the necrotic process is started according to stochastic necrosis
model [12]. For the values of oxygen higher than o2_necrosis_threshold,
there is no necrosis. The default PhysiCell values which are also applied for DCCs
are o2_necrosis_threshold=5.0 and o2_necrosis_max=2.5. For the
CSCs, these values are significantly lower which simulate higher resistance to low
oxygen values: cancer_stem_cell_o2_necrosis_threshold=0.1 and
cancer_stem_cell_o2_necrosis_max=0.01.
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There are still some more parameters that refer to DCCs and CSCs that are
connected to the other concepts (vascularity, drug diffusion etc.) and they will be
described in corresponding sub-sections.

Healthy cells
Healthy cells are introduced in EvoNano PhysiCell extension to simulate the impact
of different drugs on healthy tissue. These cells are not so important for the mecha-
nism of tumour growth and dynamics so many aspects of these cells are turned off.
Healthy cells are immobile and they do not divide nor die, either via apoptosis or
necrosis.

The presence of healthy cells in the simulation is controlled via parameter
healthy_cells_active of type Boolean. Healthy cells are randomly dis-
tributed throughout the initial space. The number of healthy cells in the initial space is
controlled via parameter random_healthy_cells (dimensionless). When the
initial space needs expansion, due to the tumour growth, the number of healthy cells
is controlledwith parameterrandom_healthy_cells_expansion_factor
(dimensionless).

Vascular cells and an angiogenic factor
Thismechanism simulates the growth of vascular networkswithin and around tumour
tissue which ensures an additional supply of oxygen to the growing tumour. An
angiogenic factor and vascular cells mechanism can be turned on/off with param-
eter vascularity_active of type Boolean. When turned on, this mechanism
introduces a new substrate into simulation: an angiogenic factor (AF). In that case,
all cancer cells secrete AF which represents an activation signal to vascular cells.
Vascular cells then try to improve the creation of a vascular network in the direction
of a higher concentration of AF.With such a mechanism, a growing tumour indicates
the higher production of vascular cells, which results in a richer vascular network,
which as a consequence provides a higher supply of oxygen to tumour tissue.

The main parameters (diffusion coefficient and decay rate) for AF are taken from
[11]. The amount of AF which is secreted from one cancer cell is given in the
parameter angiogen_in_cancer_cell.

Vascular cells are initially placed randomly in the simulation space. The number of
the vascular cells in the initial space is specified by a parameter vascular_seed_
points (current value is 1). Afterward, they are dividing in the direction of high AF
density if the concentration of AF is above the defined threshold value. This thresh-
old is given by parametercritical_angiogen_to_expand_vascularity
(current value is set to 0.055 according to [39]). In such a way, we simulate the
growth of capillaries and blood supply of tumour. However, not all vascular cells in
whose environment the concentration of AF is higher than the threshold value divide
because that would cause the exponential growth of the vascular network. To pre-
vent this exponential growth we introduced the probability of dividing vascular cells
in the presence of high AF concentration. This value is specified in the parameter
vascular_cell_expansion_probability, the current value is 0.01which
is determined empirically.
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When the concentration of AF is too high (higher than parameter
critical_angiogen_to_stop_o2_secretion) the secretion of oxygen
from vascular cells stops. With this mechanisms, we simulate the death of vascular
cells which happen in the deep interior of the tumour as a result of tumour necrosis
(necrotic core).

In the situation when the simulation space should be expanded, the expansion of
vascular network is controlled with parameter expand_vascularity_when_
_expanding_space (Boolean parameter, default value is true). The quantity
of this expansion is controlled through expansion_scale_factor parameter
(current value is 1.75, empirically adjusted).

When the functionality of vascular cells is defined, the process of metastasis
can be also introduced. In metastasis, cancer cells break away from the original
(primary) tumour, travel through the vascular system, and form a new tumour in other
organs or tissues of the body. Therefore, we introduce two more parameters which
control the process of detachment of CSC: CSC_detachment_probability
and CSC_detachment_critical_proximity. The first parameter defines
the probability of CSC which is near some vascular cell to detach from the original
tumour and enter the vascular system. The threshold distance which defines what
is near is defined with the second parameter. Until now, we have not experimented
with the metastasis process yet, so these parameters are set to the following values:
0.0 and 1000000, respectively.

A prostaglandin
Prostaglandins are a family of signalingmolecules that regulate the invasivebehaviour
of cancer cells. Instead of implementing all members of the family as separate sub-
strates, we implement an abstract prostaglandin substrate that regulates DCC-CSC
conversion. In our implementation, a prostaglandin is secreted from cells when a
cell dies either by apoptosis or necrosis. The simulation of this substrate is turned
off/on with Boolean parameter prostaglandin_active. The parameters for
diffusion and decay rate are taken as for substrate cytokine (described below) [18]
since there are no reliable experimental data for prostaglandins.

The amount of a prostaglandin that is secreted from a cell is controlled via param-
eter prostaglandin_in_cancer_cell. This value is set to 8.8e-7.

High values of prostaglandin trigger the conversion of some DCCs to CSCs. The
DCC->CSC conversion is triggered when the concentration of prostaglandin in sub-
strate exceeds the value of parameter cancer_cell_prostaglandin_thr.
Of course, only a small amount of DCCs is converted into CSC in the presence of
high prostaglandin values. The quantity of conversions is controlled with parameter
prostaglandin_conversion_probability which represents the proba-
bility of DCC->CSC conversion in the presence of prostaglandin. This parameter is
empirically determined to value 0.00008, in order to obtain expected tumour growth
and expected number of CSCs. Also, the number of prostaglandin induced DCC-
>CSC conversion is tracked within the simulation as an important indicator, and it
is reported in the log file.
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CAF cells and cytokine
Cancer-Associated Fibroblasts (CAFs) are special types of tumour cells that are
responsible for providing physical support for other tumour cells and for secreting
cytokines [22]. These cells appear near vascular cells and it is important to preserve
the expected ratio of vascular and CAF cells. This ratio is defined with parameter
CAF_vascular_ratio (value set to 0.6, determined empirically). The simulation
of these cells and accompanying substrate cytokine is turned off/on with Boolean
parameter CAF_active.

The division of CAF cells is turned off since it is observed that they appear in a ran-
dommanner near the vascular network.We simulate the samebehaviour in ourmodel.
Also, the apoptosis is turned off since CAF cells are unable to undergo apoptosis. The
necrosis still exists although these cells are more resistant to low oxygen levels than
DCCs (while CSCs are more resistant than CAF cells). The oxygen values which
indicate necrosis are defined with parameters caf_o2_necrosis_threshold
and caf_o2_necrosis_max in the same fashion as with CSCs. These values are
set to values 1 and 0.1 respectively, to simulate oxygen resistance between DCCs
and CSCs.

As already mentioned, CAF cells secrete cytokine, another substrate that is sim-
ulated. Te cytokine diffusion coefficient and decay rate parameters are taken from
[18]. The amount of cytokine which is secreted from one CAF cell can be adjusted
through parameter cytokine_in_CAF. This value is set up on 8.8e-7 according
to [18].

The cytokine affects neighboring cells in a similar manner as prostaglandin.
In the presence of high cytokine levels, some DCCs convert to CSCs. The crit-
ical cytokine concentration which triggers DCC->CSC conversion is defined in
parameter cancer_cell_cytokine_resistance. The probability of DCC-
>CSC conversion in the presence of high cytokine values is given in parameter
cytokine_conversion_probability. The values of these two parameters
are set up on values 1e-12 and 0.01, after extensive experiments whose goal was to
replicate the desired tumour growth and desired cell type ratios.

CAFcells have onemore parameter:o2_stop_cytokine_threshold. This
parameter defines the lowest value of oxygen for which the CAF cell is capable to
secrete cytokine. Bellow this oxygen value (current value is 10) CAF cell does not
secrete cytokine, although it does not die (oxygen levels for necrosis are much lower:
0.1 and 1). If oxygen values later return to values higher than this threshold CAF cell
“wakes up” and secretes cytokine again.

Drug diffusion mechanism
The mechanism of drug administration is supported on the level of the substrate. We
simulate nanoparticle-based cancer therapies by simulating functionalized nanoparti-
cles (NP), i.e. the NPs with an attached particular drug. That drug can affect tumour
in different ways: CSC and DCC death, stopping the division of cancer cells, or
destroying tumour vascular network. In the current simulator, we support only drugs
that cause cancer cell death, but the other mechanisms will be also supported in the
future.
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Table 1 NP resistance values for different cell types

healthy_cell_NP_resistance 0.7

cancer_cell_NP_resistance_lower_bound 0.3

cancer_cell_NP_resistance_upper_bound 0.5

cancer_stem_cell_NP_resistance_lower_bound 0.5

cancer_stem_cell_NP_resistance_upper_bound 0.7

The simulation of the drugmechanismcan be turned off/on via theBoolean param-
eter NP_active. NP substrate is secreted from vascular cells similarly to oxygen.
The amount of secretedNPs fromone vascular cell can be controlled through parame-
terNP_in_vascular_cell. Since the administration of the drug does not start at
the same time as the tumour creation but only after a tumour is detected and analyzed,
we simulate this behaviour with parameter cancer_cells_to_activate_NP,
which specifies the number of cancer cells when the drug administration starts.

Secreted NP has an influence on all present cells. In the current version, if the
concentration of NP exceeds some threshold value, the cell dies by apoptosis. The
threshold values are different for all cells since different types of cells have different
resistance to a particular drug. These threshold values are controlled by several
parameters. These parameters and their current values are given inTable 1.All healthy
cells have the same value of NP resistance. On the other hand, each DCC and CSC
acquires a unique value from the interval [lower_bound..upper_bound].

Figure 1 illustrates all previously introduced concepts. It shows the state of
the tumour after 15 simulation days. This condition is obtained using previously
described parameters and their values which are mentioned in the text. The cell
types have the following colors:

• grey: DCC
• blue: CSC
• maroon: Vascular cell
• yellow: CAF cell
• orange: Necrotic cell

Moreover, the empty space in the middle of tumour represents necrotic core, but the
old necrotic cells are removed from the simulation due to efficiency issues.

2.2 EvoNano PhysiCell Implementation

The implementation of the EvoNano PhysiCell simulator for precision medicine is
organized into several custom C/C++ modules (modules put in custom_modules
folder of PhysiCell) and the main module realizing necessary initialization and the
main loop of the simulator. The custom modules are:
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Current time: 15 days, 0 hours, and 0.00 minutes, z = 0.00 microm

33086 agents

200 microm
0 days, 2 hours, 52 minutes, and 56.6104 seconds

Fig. 1 An example of tumour after 15 simulation days

1. cancc that contains functionalities related to cancer cells supported by the
simulator,

2. csvlog that defines functions for emitting log messages in CSV (comma sep-
arated values) log files,

3. evo_nano_3D that defines functions for creating cell types, initializing cell
definitions, initializing the microenvironment and tissue and realizing specific
rules for cancer cell creation and division,

4. healthyc that implements normal (non-cancer, healthy) cells,
5. spexp that implements the microenviroment with dynamic space expansion

capabilities,
6. utils that contains various utility functions for sampling random numbers,
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Fig. 2 Dependencies
between modules of the
EvoNano PhysiCell
simulator

7. vascular that implements functionalities related to vascular cells and vascular
network growth.

As usually for C/C++ modules, each module of our simulator is realized in two files,
i.e. one header file exposing the interface of the module to other modules and one
cpp file containing the full implementation of the specified functionalities. Figure 2
shows dependencies between the modules of the simulator including also the main
module.

Utils module
The utils module is located at the bottom of the module dependency graph and it
is the only module that does not depend on other EvoNano PhysiCell modules. This
module implements two routines for sampling real-valued random numbers from
uniform distributions: one for sampling a real number from the interval [A, B] and
one for sampling a real number from [A, B] with a given probability p or from the
interval [C, D] with 1 - p probability (A, B, C , D and p are input parameters). This
module also defines twomethods returning the borders of the simulation space inside
which are sampled coordinates of:

1. initially created cancer and health cells (cells that are formedwhen the simulation
starts), and

2. healthy and vascular cells after extending the simulation space.
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Vascular module
In EvoNano PhysiCell, blood vessels are implemented as chains of vascular cells.
This means that one capillary is composed of adjoined vascular cells, while the
complete vascular network is a set of capillaries (which are not necessarily mutually
inter-connected). Thevascularmodule defines various routines related to vascular
cells and their functions. This module defines 4 important global variables:

1. bool vascularity_active—a boolean variable indicating whether the
vascular network is simulated,

2. bool NP_simul—a boolean variable indicating whether NP (nano-particles
or drugs) is simulated,

3. bool NP_active—a boolean variable indicating whether NP diffusion is
active when NP is simulated (vascular cells may not start diffusing NP immedi-
atelywhen the simulation starts, but after some time specified in the configuration
file; NP diffusion may also stop and later resume in more complex simulation
scenarios), and

4. std::vector<Cell*>* vascular_cells—a pointer to vector con-
taining pointers to all vascular cells (each cell PhysiCell is an instance of the
Cell class).

The module exposes the following functions to other EvoNano PhysiCell modules:

1. void init_vascular_network()—creates the initial vasculature when
the simulation starts,

2. void expand_vascular_network(double sm)—creates newvascu-
lar cells in a new space region after the simulation space dynamically expands
(sm is the seed multiplier),

3. void init_vascular_cells()—initializes vascularity configuration
parameters and creates a PhysiCell cell definition object for vascular cells,

4. Cell* create_vascular_cell(double x, double y, double z)—
creates a new vascular cell at the given position (x , y, z) and returns the pointer
to it, and

5. void divide_vascular_cell(Cell* c)—“divides” the vascular cell
c by creating a new vascular cell in the immediate neighborhood of c.

The initial vascular network is formed by creating k vascular seed cells at the
beginning of the simulation, where k is one of the EvoNano PhysiCell configu-
ration parameters. The coordinates of each seed cell are randomly sampled. The
total amount of kṡ vascular seed cells are also created when the simulation space
is expanded, where s is the seed multiplier. Their coordinates are also randomly
sampled but considering only the newly created regions of space.

Vascular cells are defined as non-divisible, immortal, and non-motile cells of
constant volume as shown by the program code fragment given below. Two cus-
tom variables are also associated to each vascular cell: num_expansions and
flagged_for_division. The value of the first variable reflects howmany times
a vascular cell was ”divided”. The second variable indicates whether the cell is desig-
nated to be ”divided” in the next simulation cycle. The vascular cell can be ”divided”
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exactly once, i.e. if num_expansions is equal to 0 then the cell can be flagged
for division and after division num_expansions is increased by 1.

Program code fragment: initialization of vascular cell definition

Cell_Definition vascular_cell_def;

void create_vascular_cell_definition() {

...

vascular_cell_def = cell_defaults;

// turn off motility

vascular_cell_def.phenotype.motility.is_motile = false;

// turn off cell division

int s = live.find_phase_index(PhysiCell_constants::live);

int e = live.find_phase_index(PhysiCell_constants::live);

vascular_cell_def.phenotype.

cycle.data.transition_rate(s, e) = 0.0;

// turn off cell death

int apoptosis = cell_defaults.phenotype.

death.find_death_model_index("Apoptosis");

vascular_cell_def.phenotype.death.rates[apoptosis] = 0.0;

int necrosis = cell_defaults.phenotype.

death.find_death_model_index("Necrosis");

vascular_cell_def.phenotype.death.rates[necrosis] = 0.0;

// turn off volume updates

vascular_cell_def.functions.volume_update_function = NULL;

// custom variables

vascular_cell_def.custom_data.add_variable

("num_expansions", "dimensionless", 0);

vascular_cell_def.custom_data.add_variable

("flagged_for_division", "dimensionless", 0);

// set function performing phenotype updates

vascular_cell_def.functions.update_phenotype =

vascular_cell_update_phenotype;

...

}
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The function for creating vascular cells reduces to the PhysiCell function for
creating cells (also called PhysiCell agents) with the vascular cell definition defined
in the vascular module. This function also adds the newly created vascular cell
to the vector of all vascular cells.

The function for updating the phenotype of vascular cells defines how vascular
cells react to the angiogen. Let a denotes the concentration of the angiogen near a
vascular cell v. The impact of a to v is defined by the following rules implemented
in the function for handling the angiogen:

• If a is higher than the angiogen threshold to stop oxygen secretion then c immedi-
ately stops releasing oxygen. When a drops below this threshold then c reactivates
its oxygen release.

• If a is higher than the critical angiogen threshold to expand the vascular network
and c was not previously expanded then it is considered as the candidate for
”division”. The cell is marked for division with a certain probability that is one of
EvoNano PhysiCell parameters controlling vascular network growth.

The function for phenotype updates of vascular cells also handles NP. If NP is sim-
ulated and active then vascular cells release a certain concentration of NP into the
environment.

As already emphasized, the division of a vascular cell is actually the creation of a
new vascular cell. The new cell is created to touch the cell marked for division in the
opposite direction of the angiogen gradient. The function for dividing vascular cells
also increases num_expansions variable to prevent further divisions and ensure
that vascular cells form a chain-like structure.

Healthy module
Healthy (normal, non-cancer) cells are implemented in thehealthymodule. In real-
ity, normal cells are divisible and mortal. However, their division rates are negligible
compared to cancer cells. Thus, normal cells are in EvoNano PhysiCell implemented
as non-divisible cells. Additionally, a normal cell can die by entering apoptosis only
if it is exposed to a high concentration of NP.

The module defines the following two global variables:

• bool healthy_cells_active—a boolean flag indicating whether healthy
cells are simulated, and

• int NP_HC_deaths—the total number of normal cell deaths due to critical
exposure to NP.

The public functionalities of the module are given by the following functions:

• void init_healthy_cells()—initializes configuration parameters and
creates the definition object for healthy cells.

• Cell* create_healthy_cell(double x, double y, double z)—
creates and returns a new healthy cell at given coordinates.

• void expand_healthy_cells(int m)—creates new healthy cells in the
new region of space after the simulation space is dynamically expanded (m is a
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multiplier factor, i.e. the total number of newly created normal cells is kṁ, where
k is the number of normal cells created at the start of the simulation).

The function defining how healthy cells react to NP is called by the function
performing phenotype updates at regular time intervals. This function checkswhether
the concentration of the NP near a healthy cell is higher than critical. If it is then the
apoptotic death of the cell is activated (see the program code fragment given below).

Program code fragment: function for handling NP by healthy cells

void healthy_cell_handle_NP(Cell* c) {

// is NP simulated?

if (!NP_simul)

return;

// is NP active?

if (!NP_active)

return;

int NP = microenvironment.find_density_index("NP");

double NP_near = microenvironment.

nearest_density_vector(c->position)[NP];

if (NP_near > HC_NP_resistance) {

int apoptosis = cell_defaults.phenotype.

death.find_death_model_index("Apoptosis");

c->start_death(apoptosis);

++NP_HC_deaths;

}

}

Cancc module
The functionalities of three different types of cancer cells, DCC, CSC, and CAF, are
implemented in the canccmodule. This module defines 6 global variables. The first
three global variables are boolean flags that can be set to enable or disable certain
functionalities related to cancer cells:

1. bool cancer_stem_cells_enabled—CSC cells are simulated if this
flag is set to true, otherwise CSC cells are not created during the simulation.

2. bool prostaglandin_simul—if this flag is set to true then DCC and
CSC cells release prostaglandin during their death cycle.

3. bool cytokine_caf_simul—this boolean flag indicates whether CAF
cancer cells releasing cytokine are simulated or not.
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The next three global variables are counters:

1. NP_CC_deaths—the number of cancer cell deaths caused by NP.
2. prostaglandin_conversions—the number of DCC converted to CSC

due to critical exposure to prostaglandin.
3. cytokine_conversions—the number of DCC converted to CSC due to

critical exposure to cytokine.

The module exports the following functions:

• void init_cancer_cells()—initializes configuration parameters related
to cancer cells and creates definition objects for all three cancer cell types.

• Cell* create_cancer_cell(double x, double y, double z,
bool s)—creates a new DCC cell (if s is false) or a new CSC cell (if s is true)
at the given position.

• Cell* create_CAF_cell(double x, double y, double z)—
creates a new CAF cell at the given position.

• void divide_cancer_cell(Cell* c)—divides a DCC cell into two
cancer cells.

• void divide_cancer_stem_cell(Cell* c)—divides a CSC cell into
two cancer cells.

The function init_cancer_cells creates three different instances of the
Cell_Definition class, one object per cancer cell type. These objects reflect
the main differences between different cancer cell types, i.e. each cell type defines its
cell division rate, motility parameters, adhesion strengths, apoptosis rates, oxygen
thresholds to enter necrosis, secretion, and uptake parameters for relevant substrates
(all those parameters are specified in the configuration file). Two custom data vari-
ables are associated with each cancer cell:

• NP_resistance—the critical concentration of NP to start apoptotic cell death.
• NP_prev—the concentration of NP near the cell in the previous iteration of the
simulation. This variable enables quantifying temporal change of NP near the cell
and to adjust cell division rate accordingly.

All cancer cells update their base phenotype parameters according to the oxygen
phenotype update model defined by PhysiCell. However, each cancer cell type has
its own phenotype update function that additionally defines how cancer cells react
with substrates and release them. The cancc module implements customized phe-
notype update functions relying on the standard oxygen phenotype update model
that additionally defines how cancer cells release and interact with substrates. The
phenotype update function for DCC is shown in the code inset given below.
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Program code fragment: phenotype update function for DCC.

void cancer_cell_phenotype_update(

Cell* c, Phenotype& phenotype, double dt)

{

// dying cancer cells release prostaglandin

if (c->phenotype.death.dead && prostaglandin_simul) {

int p = microenvironment.

find_density_index("prostaglandin");

microenvironment.

nearest_density_vector(c->position)[p] =

PROSTAGLANDIN_IN_CANCER;

return;

}

// standard oxygen-based phenotype update model

update_cell_and_death_parameters_O2_based(

c, phenotype, dt);

// phenotype updates based on NP

cancer_cell_handle_NP(c);

if (prostaglandin_simul) {

// check for prostaglandin-based DCC->CSC conversion

cancer_cell_handle_prostaglandin(c);

}

if (cytokine_caf_simul) {

// check for cytokine-based DCC->CSC conversion

cancer_cell_handle_cytokine(c);

}

}

The function for handling NP operates according to the following rules. If the
concentration of NP near the cancer cell is higher than the NP resistance threshold
for that cell then the cell enters apoptotic death. The concentration of NP near the
cancer cell also affect the cell division rate: if it is close to zero then the cell division
rate is returned to the original value from the configuration file, otherwise, the cell
division rate is divided by the increase of NP concentration (i.e., more NP implies
slower division of cancer cells).
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Functions for handling prostaglandin and cytokine are structurally similar. If the
concentration of prostaglandin (resp. cytokine) is higher than critical then the DCC
cell is converted into a CSC cell with a given probability that controls the conversion
rate.

Program code fragment: function for handling prostaglandin.

void cancer_cell_handle_prostaglandin(Cell* c) {

int p = microenvironment.

find_density_index("prostaglandin");

double pnear = microenvironment.

nearest_density_vector(c->position)[p];

double prob = UniformRandom();

if (prostaglandin_near > cc_prostaglandin_thr &&

prob <= prost_conv_prob)

{

// DCC -> CSC conversion

c->convert_to_cell_definition(cancer_stem_cell_def);

prostaglandin_conversions++;

}

}

Cancer cells have heterogeneous resistances to NP. This means the resistance to
NP is randomly sampled from a uniform distribution where each cell type has its
own upper and lower bounds of the distribution. The NP threshold above which a
cell enters apoptotic death is determined upon cell creation as it can be seen in the
following program code fragment.

Program code fragment: function for creating DCC and CSC cells

Cell* create_cancer_cell(

double x, double y, double z, bool stem)

{

Cell* c;

if (stem)

c = create_cell(cancer_stem_cell_def);

else

c = create_cell(cancer_cell_def);

c->assign_position(x, y, z);
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// determine the NP resistance level

if (NP_simul) {

int ind = c->custom_data.

find_variable_index("NP_resistance");

double u = UniformRandom();

if (stem)

c->custom_data[ind] = CSC_NP_LOWER +

u * (CSC_NP_UPPER - CSC_NP_LOWER);

else

c->custom_data[ind] = CC_NP_LOWER +

u * (CC_NP_UPPER - CC_NP_LOWER);

}

return c;

}

EvoNano PhysiCell functions for dividing cancer cells rely on the divide()
method implemented in the PhysiCell Cell class. This method called on an arbi-
trary cell c returns a new cell n that is placed near c. The new cell n has the same
characteristic as c and the volume of both cells is equal to half of the volume of c
prior to division. The function for dividing DCC always creates a new DCC if CSC
cells are not simulated. If CSC cells are simulated then a new DCC is converted
to a CSC with a certain probability (see the program code fragment given below).
The division of CSC cells is realized similarly by following appropriate rules for
symmetric and asymmetric CSC division.

Program code fragment: function for dividing DCC cells

void divide_cancer_cell(Cell* c) {

if (!cancer_stem_cells_enabled) {

Cell* new_cell = c->divide();

return;

}

double pCSC = UniformRandom();

Cell* new_cell = c->divide();

// CSCP: the probability to convert to a CSC

if (pCSC <= CSCP) {

new_cell->convert_to_cell_definition(
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cancer_stem_cell_def);

}

}

Evo_nano_3d module
The evo_nano_3d module implements the main rules of the simulator (cell divi-
sion and detachment rules) and various setup functions that are called from the main
module. This module also implements a function providing a periodic report about
all cells and a custom cell coloring function for visualizations produced by Physi-
Cell. This module initializes the default cell definition object that is reused to build
definitions of all supported cell types. The default cell definition object specifies the
default cell cycle model and oxygen uptake and secretion parameters.

The module defines the following two setup functions:

• void setup_microenvironment() to initialize the BioFVM microenvi-
ronment (please recall that BioFVM is a library used by PhysiCell to simulate
diffusion)

• void setup_tissue() to setup the vascular network and create initial DCC
and healthy cells that are randomly placed in the environment. The number of
initially created DCC and healthy cells is specified in the configuration file.

The function for making cell report iterates through the vector of all cells (this
vector is maintained by PhysiCell) and makes the distribution of cells per cell type.
This function also counts how many cells entered the death cycle.

The function defining EvoNano PhysiCell cell division rules is an umbrella func-
tion: it iterates through the vector of cells marked for division and depending on
the cell type calls the appropriate cell division function defined in other EvoNano
PhysiCell modules. Additionally, this function takes care of CAF cells by creating
them near vascular cells as the vascular network grows such that the ratio of CAF to
vascular cells never exceeds the bound specified in the configuration file.

Program code fragment: function implementing cell division rules.

void evonano_cell_division(

Cell_Container* cell_container, double t)

{

for (int i = 0;

i < cell_container->cells_ready_to_divide.size();

i++)

{

Cell* c = cell_container->cells_ready_to_divide[i];

int type = c->type;
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if (type == CANCER_CELL_TYPE)

divide_cancer_cell(c);

else if (type == CANCER_STEM_CELL_TYPE)

divide_cancer_stem_cell(c);

else if (type == VASCULAR_CELL_TYPE) {

divide_vascular_cell(c);

if (cytokine_caf_simul)

create_CAF_near_vascular(c);

} else

c->divide();

}

cell_container->cells_ready_to_divide.clear();

}

Themodule also defines theCSCdetachment rule.Namely, if aCSCcell is close to
some vascular cell then it can go to the vascular network with a certain probability.
The number of detached CSC cells is a proxy indicator of the degree of tumour
metastasis. Both the critical distance and the detachment probability are specified in
the configuration file. Also, the user can disable CSC detachments.

Spexp module
The BioFVM environment in PhysiCell has constant dimensions. For a large tumour
it is necessary to allocate large dimensions of the simulation space prior to starting
the simulation. If the tumour evolves slowly then BioFVMmost of the time simulates
diffusion through empty space regions located far from actual cancer cells, which in
turn may drastically slow down the simulation. Thus, we decided to make a general-
purpose extension of PhysiCell that enables dynamic space expansion in run time.
With this capability, it is possible to start the simulation in a relatively small space
that is appropriately expanded as the tumour grows. Consequently, BioFVM does
not simulate diffusion through empty space regions which significantly improves the
execution time for large tumours.

Dynamic space expansion functionalities are implemented in the spexpmodule.
This module defines two public functions called from the main module:

1. bool check_conditions_to_expand()
2. void expand_microenvironment(double voxel_size)

The first function checks if there is a cell close to the space borders. If there is a cell
such that its distance to the closest border is smaller than some threshold then the
first function returns true indicating that the space should be expanded by calling the
second function. The distance threshold is one of the simulation parameters and it is
specified in the configuration file.

The second function for expanding the microenvironment first makes its copy, i.e.
the density of each substrate in each voxel is saved in a temporary 3Dmatrix. Then, a
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new bigger microenvironment is created and substrate densities are restored from the
temporary matrix. The increase along all space axes is specified in the configuration
file. The new microenvironment is registered to each cell by calling the appropriate
method. Finally, all substrate gradient vectors and the BioFVM diffusion solver are
reinitialized.

Csvlog module
The csvlog module is the simplest EvoNano PhysiCell module. This module logs
the state of the simulation at regular time intervals by exporting relevant information
for all cells (cell type, position, and volume) into a csv file. The concentration of
oxygen near each active cell is also recorded.

Main module
The main module defines the main function which starts the simulation and imple-
ments the main simulation loop that executes for the specified maximum simulation
time. Prior to entering the main simulation loop, all necessary initialization steps are
performed:

1. the configuration file is parsed and loaded into an internal data structures,
2. the random number generator is initialized,
3. cell type definition objects are instantiated, and
4. the BioFVM microenvironment is created and populated with initially created

cells.

The main loop takes care of events occurring at different time scales: diffusion of
substrates (0.1min scale), cell mechanics updates (1min scale) and cell processes
(10–100min scale). Each iteration of the main loop corresponds to one event at
the lowest time scale (substrate diffusion), whereas events at higher time scales are
triggered by checking appropriate time step sizes. In each iteration of the main loop
the following actions are performed:

1. BioFVM functions are executed to simulate the diffusion of the specified sub-
strates and update the microenvrionment accordingly.

2. It is checked whether the simulation space should be expanded (by calling the
function from thespexpmodule). If the criterion for expanding space is satisfied
then the microenviroment, the vascular network, and the set of healthy (normal)
cells are expanded.

3. It is checked whether NP should be activated in the case that it is simulated. The
diffusion of NP activates either after the specified number of days or after the
tumour reaches some critical mass.

4. If it is time for cell events then the position, volume, and phenotype of each
cell is updated and the routines from the evo_nano_3dmodule implementing
custom EvoNano cell division and detachment rules are called.

5. It is checked whether the simulation state should be logged and appropriate log
operations are performed.
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3 Results

The configuration parameters of EvoNano PhysiCell could be calibrated such that
the growth of a simulated tumour is aligned with some theoretical model. To set
parameters of the simulator corresponding to normal physiological conditions we
use the Gompertzian growth model [31]. The Gompertzian growth is given by the
following equation

V (t) = V0e
α
β
(1−e−βt )

,

where V (t) is the total tumour volume at time t , V0 is the initial tumour volume, and
α and β are constants regulating the growth rate. In our experiments we use α = 0.58
and β = 0.072 according to the recent study by Vaghi et al. [36]. In our simulations,
we always start from 100 regular cancer cells (DCCs) that are randomly placed
within the initial simulation space of a small dimension (x = y = z = 200µm). Then,
we simulate 30days of tumour growth with dynamic space expansion capabilities
described in the previous section. Since the volume of a single cell when crated
by the simulator is 0.000002494mm3, the volume V0 = 0.0002494mm3. Figure3
shows the growth of a simulated tumour after calibrating the simulator’s parameters
according to the previously described Gompertzian growth model. The volume of
the tumour is computed as the total volume of all cancer cells and it is averaged over
10 simulations. It can be seen that only in the first 10days there are small deviations
from the theoretical model and after that initial period the volume of the simulated
tumour is almost identical to the predictions by the theoretical model.

The evolution of the total number of live cancer cells, dying cancer cells and
vascular cells is shown in Fig. 4. One randomly place vascular cell is created at the
beginning of each simulation in order to initialize the vascular network. This network

Fig. 3 The daily evolution of the volume of a tumour simulated by EvoNano PhysiCell compared
to the volume determined by the Gompertzian model
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Fig. 4 The daily evolution of the total number of live cancer cells, dying cancer cells and vascular
cells in the simulated tumour

is then expanded according to nearby concentrations of the angiogen produced by
cancer cells. It can be seen that the total number of vascular cells closely follows the
total number of live cancer cells. On the other side, the total number of dying cancer
cells is close to 0 up to day 10. On day 10, the necrotic core of the tumour emerges
and the number of dying cancer cells grows at a faster rate than live cancer cells and
vascular cancer cells.

Simulated cancer cells can enter either the necrotic or the apoptotic death cycle.
Figure5 shows the evolution of the percentages of necrotic and apoptotic cancer cells.
It can be observed that there is a phase transition that corresponds to the emergence
of the necrotic core happening at day 10: in the first days cancer cells mostly die by
apoptosis and later, due to low oxygen conditions, they die dominantly by necrosis.

As alreadymentioned, three different types of cancer cells are currently supported
by the EvoNano PhysiCell simulator: DCC, CSC, and CAF cancer cells. The per-
centages of those three types of cancer cells considering the whole tumour (both live
and dying cancer cells) are shown in Fig. 6. It can be seen that CSC cells constitute
less than 6% of the tumour. More specifically, their percentage slowly grows from
2.94% on day 1 to 5.65% on day 30. On the other hand, DCC and CAF cells have
a more complex dynamic with a phase transition. It can be seen that the percentage
of CAF cells increases in the first 12days and then starts to decline. The dynamic of
DCC cells is exactly the opposite: the percentage of DCC cells first decline and after
day 12 this percentage starts to grow. This phase transition can be also explained
by the emergence of the necrotic core. After the emergence of the necrotic core, the
number of dying cancer cells, which are mostly DCC cells, grows at a faster rate
than the number of vascular cells. Consequently, DCC cells grow faster than CAF
cells whose growth rate is always lower than the growth rate of vascular cells.

One of the important aspects of cancer simulation with the previously described
setup is the count and origin of CSCs. These cells do not die in apoptosis, and they
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Fig. 5 The percentage of necrotic and apoptotic cells in the total number of dying cancer cells

Fig. 6 The percentage of DCC, CSC and CAF cancer cells in the simulated tumour

are more resistant to low oxygen levels. Therefore, they have an important influence
on cancer growth. Furthermore, the emergence of these cells is three-folded:

• some CSCs appear from DCCs in the DCC->CSC conversion process under the
influence of high levels of cytokine
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Fig. 7 The daily count of CSCs and their origin

• some CSCs appear from DCCs in the DCC->CSC conversion process under the
influence of high levels of prostaglandine

• all other CSCs are created as a result of DCCs or other CSCs division.

The number of created CSCs according to their origin is shown in Fig. 7. The
distribution of prostaglandin converted and cytokine converted CSCs is not empiri-
cally known (from clinical research) but it is assumed that the number of converted
CSCs is significantly smaller. The number of CSCs and their origin is controlled
through numerous parameters as already described. The situation shown in Fig. 7 is
a result of many experiments and parameter tuning, all for the purpose of obtaining
Gompertzian growth.

In order to demonstrate the influence of all introduced concepts, we performed
several simulations with different setups. We compared the simulations where all
parameter values are the same (as described earlier) and where:

• prostaglandin and CAF/cytokine mechanisms are turned off
• only prostaglandin mechanism is turned off
• only CAF/cytokine mechanism is turned off
• all mechanisms are turned on.

The daily volumes of tumourswith these setups are given in Fig. 8. It is evident that
the simulation without prostaglandin behaves almost exactly as with all mechanisms
turned on. Also, the simulation without cytokine/CAF behaves similarly as without
bothmechanisms.However, as seen in Fig. 7 the amount of prostaglandin conversions
is higher than cytokine conversions. That may imply that prostaglandin will have a
higher influence on cancer growth. However, this is not the case (as seen in Fig. 8)
because cytokine/CAFmechanisms also influence the propagation of CAF cells, and
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Fig. 8 The daily evolution of the volume of a tumour simulated with different simulation setups

the amount of them is not negligible (see Fig. 6). All in all, the simulation with all
mechanisms nicely follows Gompertzian growth with all specified parameters. If any
of the mechanisms are turned off, the re-tuning of parameters is inevitable.

4 Conclusions

By intensive experiments, we simulate nanoparticle-based cancer therapies and the
existence of NPs with an attached particular drug. That drug can affect cancer in
different ways but at the moment we support only drugs that affect cancer cell death.

As we mentioned, for the experimental part we used the EvoNano cancer sim-
ulator. It is implemented in C++ relying on the PhysiCell library. The simulator
realizes various types of cancer cells (differentiated cancer cells, cancer stem cells,
and CAFs), healthy cells, and vascular cells as building blocks for the vascular net-
work. Various substrates are supported (oxygen, angiogen, cytokine, prostaglandin)
including also special nano-particle substrates simulating drug diffusion. The main
technical feature of the simulator is dynamic space expansion that improves runtime
efficiency and enables simulations of larger tumours compared to regular PhysiCell-
based simulators without this feature.

The results of conducted experiments show that the large space of simulator
parameters can be calibrated to be in linewith theGompertzian tumour growthmodel.
In our simulations, we have observed the emergence of tumour necrotic cores and
related phase transitions. We also empirically examined the dynamics of cancer cell
conversions based on cytokine and prostaglandin, showing that re-tuning of simulator
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parameters is required if any of cancer cell conversion mechanisms are turned off or
changed. In short, our results demonstrate high sensitivity of tumour development
on the interplay of microenvironment signalling factors. Since this aspect of tumour
physiology is often neglected in cancer modeling, we believe that our results will
help in highlighting the importance of cell-communication signalling in analyzing
tumour growth and treatment response.
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Local Quantitative and Qualitative
Sensitivity Analysis of CSC Dynamical
Simulation

Branislava Lalic and Igor Balaz

Abstract Modeling tumour development is a challenging goal that opens a window
of opportunity for broad spectra of applications—fromdifferent feedback regulations
in tumour system to timing and dosage of new treatments testing.When properly cali-
brated and validated, models can significantly improve our knowledge and contribute
to narrowing clinical trials. In this study, we used the ODE model that includes only
stem cells (wild and mutated) and differentiated cells to investigate inhibition of the
differentiation feedback and the uncertainty in signalling parameters (self-renewal
probability and division rate) parameterization of feedback regulation affects tumour
growth. Local quantitative and qualitative sensitivity analysis is performed using data
for breast tumour tissue. Obtained results indicate that even slight variations in initial
values of signaling parameters can lead to considerable differences in tumour size
over the course of 250 days. The model exerted the highest sensitivity to self-renewal
probability for initial values above 0.5.

1 Introduction

According to the Cancer Stem Cell (CSC) hypothesis, only a fraction of tumour
cells are tumourigenic [1]. CSC supposedly duplicates without limit and differ-
entiate into multiple types of cancer cells [2, 3]. Regulation of both duplication
and differentiation is a tightly controlled process. They depend on the interplay of
internal cellular and external microenvironment factors. Essential internal features
such as symmetric/asymmetric division, metabolic state, cellular quiescence and
movements, apoptosis, and the existence of oxygen and its consumption play a signif-
icant role in tumour growth and malignancy [4]. At the same time, tumour cells and
CSC resides in a complex tumour microenvironment. Tumour microenvironment is
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composed of tumour cells, CSC, Tumour-associated fibroblasts (TAF), endothelial
cells, immune cells (e.g. tumour associated macrophages (TAM) and lymphocytes),
and non-cellular components (collagen, hyaluronan, laminin) [5–8]. The interaction
of tumour cells with their microenvironment is dynamic and bidirectional medi-
ated by a large number of soluble factors (chemokines, cytokines, growth factors,
etc.), or factors that enable horizontal genetic/biomaterial transfer including cfDNA,
apoptotic bodies, and exosomes (for a detailed overview see: [4, 9, 10].

Attempting to model such complicated systems put us immediately in front of
a crucial choice: should we aim for a descriptive or a conceptual model [11]. In a
descriptive model, the goal is to create a digital twin of the biological system of
interest by explicitly including as many processes as possible to reach a maximally
detailed system description. If adequately calibrated and validated, such models
could have very precise simulation outputs, suitable for clinical research. However,
on the negative side, descriptive models require tracking many state variables that
are impossible to analyze. Experimental values of many of these variables are hard
or even impossible to obtain, leading to arbitrary parameter fitting. In such cases,
despite an impressive number of used parameters, and close-fitting model outputs
to experimental data it is questionable whether the model correctly represents the
underlying biology [11].

On the other hand, conceptual models rely on a limited number of processes and
reduced system descriptions. It leads to robust models of limited applicability but
stable over thewide range ofmodel parameters. Also, developing a conceptual model
requires a deep understanding of the system in question so that the key mechanisms
are highlighted and modeled.

In order to choose the overall approach for the specific modeling task, the obvious
first question is “why”. Why are we modeling a specific system, and what are the
goals we want to achieve? In our case, do we want to understand the high-level
mechanics of feedback regulation in tumour systems, do we want to decipher the
relative importance of specific signals, or do we aim for a precise prediction of drug
targets? Whatever is the goal, we should take equal care of defining the translation
of experimental data to a model, performance metrics, and integration of obtained
results into a multiscale pipeline [12].

Once the descriptive versus conceptual model choice is made, the next step in the
deliberation is the correct mathematical approach for a given goal. Approaches in
mathematical modeling of cancer development are numerous (for a comprehensive
overview, see, for example, [13–18]. Roughly, they can be divided to deterministic
(mechanistic) (see, for example, [19–22]), stochastic (see, for example, [23–26])
or combined [27]. Both stochastic and deterministic approaches have positive and
negative aspects. Deterministic models highly rely on detailed knowledge of the
biological and physicochemical background of processes that are modeled. Such
an approach implies using a high number of parameters and computationally very
demanding spatial and temporal integrations. On the other hand, stochastic models
are far less computational demanding, firmly connected to well-developed computa-
tional procedures, but entirely dependent on input data. While deterministic models
allow out-of-the-box view and design of new experiments (or even to find an error in
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current ones), it is not possible with stochastic models. Therefore, their combination
looks like a promising concept. Stochastic models should identify patterns and make
short-term predictions, while deterministic models should incorporate processes and
system characteristics primarily affecting identified patterns.

As indicated at the beginning of this chapter, we will narrowly focus on the role
of CSC and feedback regulation in tumour growth. Our goal is to investigate how the
uncertainty of signaling parameters affects growth. Therefore, we opt for a concep-
tual, deterministicmodeling approach. In this chapter, we use themodel developed by
Rodriguez-Brenesa et al. [21]. The model is accompanied by the excellent numerical
methodology description, allowing full reproducibility of presented results and vali-
dation using available experimental data. The significant feature of this model is that
it considers only the basic processes (division and differentiation), cellmutations, and
feedback between cells, so it can be considered as a ground-based model. Since one
of the landmark tumour properties is growth dynamics that escaped the organism’s
control, we focus on mutations (denoted as Sdiff) that inhibit stem-cell response to
signals coming from cell differentiation and, therefore, lead to uninhibited growth.
The first step towards calibrating and validating the model for various tumour types
is to test model sensitivity. Therefore, we performed a local quantitative and quali-
tative sensitivity analysis of Sdiff mutation using an ensemble of characteristics and
parameter values for different feedback parameterization functions.

2 Methodology

2.1 Model Description

The model developed by Rodriguez-Brenesa et al. [21] is the ordinary differential
equations (ODE) model, which takes into account two populations of cells: wild
stem cells (S) with unlimited reproductive potential, and differentiated cells (D).
Only differentiated cells die, with rate d. Stem cells can divide with rate ν. The result
of division can be either two stem cells (self-renewal process) or two differentiated
cells (differentiation process). If we denote the probability of self-renewal as p, the
stem cell pool will then increase by pνS. Conversely, in the differentiation process,
the stem-cell pool increases by (1 − p)νS. Described processes lead to changes in
the number of wild stem cells over time what can be expressed in the form

Ṡ = (2p − 1)νS (1)

Ḋ = 2(1 − p)νS − dD. (2)

The RHS of Eq. (2) accounts for the increase of differentiated cells population
due to the differentiation of wild stem cells and decreased population due to cell
death.
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Two types of feedback loops are introduced in the model. Both of them are
related to signaling molecules secreted by differentiated cells. The first feedback
loop inhibits cell division, while the second one suppresses stem cell self-renewal
and thus promotes terminal differentiation and death. Both, the intensity of divi-
sion and probability of self-renewal do not assume specific mathematical terms but
depend on the number of differentiated cells (ν(D) and p(D), respectively. Therefore,
the mathematical formulation of the described system and related processes can be
written in the form

Ṡ = (2p(D) − 1)ν(D)S (3)

Ḋ = 2(1 − p(D))ν(D)S − dD. (4)

Feedbacks affecting division rate and self-renewal probability are parameter-
ized using Hill’s functions, which are commonly used to describe ligand–receptor
interactions in the form:

ν(D) = ν0

1 + hDm
(5)

and

p(D) = p0
1 + gDn

, (6)

where ν0 and p0 are initial values of ν and p, m and n are Hill’s coefficients, while h
is division feedback and g is the relative magnitude of the differentiation.

Analysis of equilibrium of the system described by Eqs. (3) and (4) and its
unique, non-trivial stationary point led to conditions for differentiation probability

in equilibrium point
(
Ŝ, D̂

)
in the form

p
(
D̂

)
= 1

2
; −p′

(
D̂

)
<

1(
2D̂

) ; Ŝ = d D̂

ν
(
D̂

) . (7)

The further we are from the equilibrium point, the more likely the mathematical
model is to enter numerical instability.

Rodriguez-Brenesa et al. [21] showed that introduced feedbacks have a fundamen-
tally different effect on cell growth control. The feedback on the self-renewal proba-
bility is sufficient to control cell growth, while the division rate feedback alone cannot
control cell growth. To assess the role of the differentiated feedback in tumour growth,
they introduced Sdiff mutation. Stem cells that acquire this mutation are denoted as
Sm. Then, the mathematical model (3)–(4) includes an additional equation for the
time evolution of mutated stem cells
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Ṡm = (2p0 − 1)ν(D)Sm (8)

and redesigned Eq. (4) for the evolution of differentiated cells pool in the form

Ḋ = 2(1 − p(D))ν(D)S − 2(1 − p0)ν(D)Sm − dD, (9)

which incorporates a decrease in population due to stem cell mutation and an increase
due to differentiation of mutated cells.

2.2 Sensitivity Tests Design

To test how the inhibition of the differentiation feedback affects S, Sm, and D cells
population over time, with added Sdiff mutations, we measured the model’s sensi-
tivity using a calculated number of all three cell types over two integration periods:
250 and 2500 days. The time scale (and unit for division rate) is chosen according
to a typical time scale of division rate. Since the main goal is to assess how param-
eter uncertainty affects model performance, we varied model parameters around one
reference value for each parameter. Therefore, this sensitivity analysis (SA) is local
[28]. Qualitative SA is performed by visual inspection of model outputs using 3D
scatter diagrams where the number of the stem (S, Sm) and differentiated (D) cells are
analyzed for different values of division rate (ν) and the probability of self-renewal
(p) for different values of feedback factors (g and h) and different functional parame-
terizations of introduced feedbacks. The sensitivity index used in quantitative SA to
evaluate uncertainties of ensemble-based model outputs is ensemble spread (SPRD)
[29]

SPRD =
√√√√ 1

m

m∑
i=1

1

(n − 1)

n∑
j=1

(
AEA
i − A j

)2
, (10)

where AEA
i is the ensemble average, Aj is the ensemble member,m is the sample size

(250 or 2500 days), and n is the ensemble size (21). Values of system characteristics
(ν, p) and parameters (g, h) used for quantitative and qualitative SA are presented in
Table 1. Initial values are adopted from Rodriguez-Brenesa et al. [21].

Impact of feedback loop parameterisation (Eqs. (5) and (6)) on tumour growth is
tested using different values for coefficients m and n (Table 2) in the Hill’s functions
for ν(D) and p(D).
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Table 1 System
characteristics and parameters
used

System
characteristic/parameter

Initial value Range

ν0 6.93 4.93–8.93

p0 0.6 0.3–0.7

g 10–4 (5–15) × 10–5

h 4.3 × 10–3 (2.3–6.3) × 10–3

In all simulations, the death rate is fixed at d = 0.0693

Table 2 Feedback loop
parameterization

Denotation m n

Par 1 1 1

Par 2 1/2 1/2

Par 3 2 2

2.3 Model Calibration and Tumour Growth Simulation

Model calibration is performed using the results of laboratory experiments with two
groups of animals. At the beginning of the experiment, both groups are injected with
1000 cells of a very aggressive MDA-MB-231 cell line of breast tumour. Starting
sixty days after injection tumour growth is regularly measured every 3–4 days during
39 days in group G12, and 29 days in group G1-4.

During calibration of the model, i.e., selection of parameterization procedure and
parameter values that best describe tumour growth dynamics, the following criteria
are applied [30]:

• Root mean square error (RMSE) is less than the standard deviation of measured
values;

• the standard deviation of simulated values (std_s) is close to the standard deviation
of measured values (std_m);

• the selected set of parameters has RMSE up to 10% above a minimum value.

Root mean square error is used to measure model performance since it provides
a good overview of the data set, with significant errors weighted more than many
minor errors [31].
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3 Results and Discussion

3.1 Sensitivity Tests

To study model sensitivity to feedback parameterization and system characteris-
tics/parameter values, we assume the healthy cell population is near equilibrium, i.e.,
initial values of S (S(0) = 173) and D (D(0) = 1904) satisfy conditions described by
Eq. (7). Starting from near equilibrium, we investigate mutated cells’ growth from
low numbers (Sm(0) = 2).

Results of SA performed and presented on Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
and Tables 1 and 2 can be summarized as follows:

• The model is the most sensitive to stem cell self-renewal probability (p) values if
its initial value is larger than 0.5. An increase in p0 from 0.5 to 0.7 can increase
Sm for 109 cells over just 250 days integration period (Fig. 3).

Fig. 1 Wild stem cells’ sensitivity on the initial value of the self-renewal probability of stem cells
(p0) and the parameterization of feedback loops in the ODE model

Fig. 2 Differentiated cells’ sensitivity on the initial value of self-renewal probability of stem cell
(p0) and parameterization of feedback loops in ODE model
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Fig. 3 Mutated stem cells’ sensitivity on the initial value of self-renewal probability of stem cell
(p0) and parameterization of feedback loops in ODE model

Fig. 4 Wild stem cells sensitivity on the initial value of division rate (ν0) and parameterization of
feedback loops in ODE model

Fig. 5 Differentiated cells’ sensitivity on the initial value of division rate (ν0) and parameterization
of feedback loops in ODE model

• Among all performed sensitivity tests, the highest spread is obtained for D and
Sm cells (depending on parameterization applied) during the first 250 days, but
for longer run (2500 days) Sm spread is expected to be highest (Tables 1 and 2).
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Fig. 6 Mutated stem cells’ sensitivity on the initial value of division rate (ν0) and parameterization
of feedback loops in ODE model

Fig. 7 Wild stem cells’ sensitivity to the relative magnitude of the differentiation (g) values and
parameterization of feedback loops in the ODE model

• After less than 50 days, bothD and Sm start uninhibited growth even if the p value
drops below 0.5 due to differentiation-related feedback (Figs. 2 and 3).

• Model sensitivity on division rate (ν) is significant but, in comparison to p0,
produces a smaller spread forD and Sm’s simulated values for all feedback param-
eterizations, while wild stem cells sensitivity is less pronounced for Par 1 and Par
3 (Figs. 4, 5, 6).

• The impact of model parameters g and h on model outputs are somewhat different
(Figs. 7, 8, 9, 10, 11, 12). While g parameter affects the spread of simulated cells



200 B. Lalic and I. Balaz

Fig. 8 Differentiated cells’ sensitivity on the relative magnitude of the differentiation (g) values
and parameterization of feedback loops in ODE model

Fig. 9 Mutated stem cells’ sensitivity to the relative magnitude of the differentiation (g) values and
parameterization of feedback loops in ODE model
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Fig. 10 Wild stem cells’ sensitivity on division feedback (h) values and parameterization of
feedback loops in ODE model

with almost the same magnitude as the division rate (ν), h parameter variations
produce a practically negligible spread (app. 10–4) over both integration periods
(Tables 1 and 2), except for D and Sm’s for Par 2.

• For all feedback loop parameterizations and tested initial values of p0 and ν0, the
spread for both D and Sm is highest for Par 2 and lowest for Par 3.

• For both p and ν system characteristics, and g and h parameters, the spread for
all simulated cell types increases over time (Tables 3 and 4).

3.2 Tumour Growth Simulation

Our calibration procedure includes three parameterizations tested in Sect. 3.1. As
a first step, we explored a wide range of possible initial values for self-renewal
probability (p0) and division rate (ν0) of stem cells, as well as relative magnitude
of the differentiation (g) and division feedback (h). Since measurements start sixty
days after injection, we assumed it as an initial day for calibration.

For both animal groups (Figs. 13 and 14), all calibration criteria are met for m =
0.5 and n = 0.5 (Par 2), g = 0.0001, h = 0.0043 and similar values for p0 (0.71–
0.72) and ν0 (16.5–19.0) (Table 5). The significant standard deviation of simulated
values and RMSE can be found only for p0 = 0.75 and ν0 = 19.0, but primarily as
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Fig. 11 Differentiated cells’ sensitivity on division feedback (h) values and parameterization of
feedback loops in ODE model

Fig. 12 Mutated stem cells’ sensitivity on division feedback (h) values and parameterization of
feedback loops in ODE model
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Table 3 Spread of S, D and Sm simulated values during 250 days integration period

Characteristic/parameter Parameterization S D Sm

p 1 6850.00 0.2E+09 3.06E+09

p 2 0.24E+12 0.37E+13 0.16E+11

p 3 5.00 0.35E+04 0.33E+05

ν 1 492.00 0.20E+08 0.71E+08

ν 2 0.12E+10 0.18E+12 0.46E+09

ν 3 14.00 0.18E+03 0.72E+03

g 1 7780.00 0.18E+07 0.13E+08

g 2 0.90E+10 0.82E+11 0.58E+08

g 3 12.00 0.23E+02 0.21E+03

h 1 0.10E-09 0.83E-05 0.31E-04

h 2 0.45E-03 0.16E+04 0.29E+04

h 3 96E-10 0.27E-08 0.44E-09

Table 4 Spread of S, D and Sm simulated values during 2500 days integration period

Characteristic/parameter Parameterization S D Sm

p 1 0.68E+03 0.26E+11 0.36E+14

p 2 0.41E+04 0.17E+08 0.13E+25

p 3 0.52E+00 0.78E+05 0.13E+09

ν 1 0.49E+02 0.18E+10 0.53E+12

ν 2 0.15E+03 0.54E+06 0.22E+23

ν 3 0.15E+01 0.22E+04 0.92E+06

g 1 0.78E+03 0.23E+07 0.15E+10

g 2 0.86E+04 0.26E+05 0.19E+20

g 3 0.12E+01 0.57E+01 0.44E+04

h 1 0.10E-10 0.11E-02 0.33E+00

h 2 0.42E-10 0.13E-05 0.33E+10

h 3 0.96E-11 0.58E-08 0.26E-05

a consequence of rather uncertain tumour growth in the G1-4 animal group before
and after the 80th day of the experiment. Namely, it is quite difficult to conclude
if it is an experimental error or unexpected growth. We intentionally selected this
group in order to stress the challenges of biological processes parameterization and
simulation.
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Fig. 13 Calibration and simulation of tumour growth for G1-2 animal group using m = n = 0.5
and two sets of values for p0 and ν0

4 Conclusion

The chosenmodel is as elementary as it could be. It includes just basic processes, cell
types, and feedbacks. It cannot be simplified further to enhance robustness without
eliminating basic processes. The model is the most sensitive to self-renewal prob-
ability for initial values above 0.5. The highest variation over time is obtained for
different initial values of mutated stem cells and differentiated cells. After 250 days,
differences in tumour size (S + D + Sm) can reach ~1 mm3 of tumour tissue (106

cells) for only 0.02 difference in p0. In other words, even slight variations in initial
parameters can lead to huge differences in tumour size.

After the firstmodel calibration using two groups of animals with different tumour
sizes at the beginning of the simulation (24.3 mm3 and 31.4 mm3, respectively), we
obtained the best calibration results for the same Hill’s coefficients (m and n), the
same values of the relative magnitude of differentiation and division feedback (g and
h) and narrow range of initial values for self-renewal probability and division rate (p0
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Fig. 14 Calibration and simulation of tumour growth for G1-4 animal group using m = n = 0.5
and two sets of values for p0 and ν0

Table 5 Standard deviation of measured (std_m) and simulated (std_s) number of cancer cells (S
+ D + Sm) and their RMSE

Animal group p0 ν0 std_m std_s RMSE

G1-2 0.72 16.5 3.02 3.04 0.67

G1-2 0.71 17.5 3.02 3.12 0.63

G1-4 0.72 17.0 2.23 1.31 1.63

G1-4 0.75 19.0 2.23 4.84 3.10

and ν0)—all very promising. Even it should be confirmed using data from additional
clinical trials with different cell lines, these simulations are already a good indication
of model efficacy.

Our further research will be focused on:
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• determination of p and ν for different cancer tissues and development stages before
and after treatment using available clinical trials;

• explore new feedback loops between different cell types and possible parameter-
izations;

• assess the effect of p and ν changes during cancer development and identify the
most favourable pattern.

Finally, the open question is to what extent obtained results are transferrable
to the biological and medical domain. Suppose both physical and mathematical
models are realistic and produce outputs that nicely correlate with experimental
results. In that case, conditions like these described with Eq. (7) can offer some more
insight into limits related to biological characteristics and parameter values,which are
challenging to determine. However, the idea that physical and mathematical models
can suggest biological limitations should always be taken with utmost precautions.
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The Role of Molecular Dynamics
Simulations in Multiscale Modeling
of Nanocarriers for Cancer Treatment

Marina Kovacevic and Igor Balaz

Abstract Nanoparticles hold great potential for improving the drug delivery of
anticancer drugs. However, this potential is not fully utilized, evident from the small
number of clinically approved nanoparticles. Nanoparticle design is evolving in com-
plexity, yet most experimental methods cannot keep up since they lack the proper
resolution for accurate characterization and testing necessary for clinical approval.
The computational approach can advance research from the laboratory to clinical
applications by offering insights into various phenomena with precision inaccessi-
ble to the experimental methods. It can also significantly reduce the time for new
design testing and the costs associated with the experimental approach. To fully
assess nanoparticles’ efficacy, we need to consider a wide range of length and time
scales. These scales include single atom resolution (for precise characterization of
their physico-chemical properties), single cell scale (to assess nanoparticle-cell inter-
actions and movement across the tissue), and whole tumour scale to evaluate their
influence on the tumour. In this chapter, we present a Multiscale approach utilizing
those scales with the focus on the role of the Molecular Dynamics Simulations.

1 Introduction

1.1 Role of Nanocarriers in Anticancer Treatment

Traditional anticancer treatment faces serious challenges. Anticancer drugs are often
poorly soluble or completely insoluble under physiological conditions. Once a drug
enters the bloodstream, it encounters numerous barriers preventing it from reaching
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its designated target [11]. Consequently, by ending up off-target, anticancer drugs
cause serious side effects. Despite all the obstacles, some amount of a drug does
end up where it should be, and the anticancer drug does what it was designed to
do—inhibit tumour growth. The exact amount varies depending on the used drug,
condition of patients, tumour type, etc., but it is estimated to be in the range of
0.01–0.1% of the injected dose [56, 61]. So in order to achieve the required efficacy,
large doses and more frequent administration are necessary. However, this is far
from the perfect solution as this approach can increase side-effects that arise from
the non-specificity and non-selectivity of these drugs.

These issues can be solved by improving drug delivery [13, 74, 75]. In vivo fate
of themolecules is determined by their physico-chemical and biochemical properties
[11, 72]. Thus, drug can be attached to or encapsulated in a drug delivery vehicle
specifically designed to carry it to its target.

Nanoparticles have proven to be an excellent tool for the cause. It has been shown
that the use of nanoparticles improves solubility and stability of drugs in the organ-
ism, shields drugs from biodegradation, prolongs blood circulation time, induces
preferential interactions between ligands, adjusts the charge density, etc. [23, 37, 49,
64]. Moreover, they can be functionalized with targeting moieties, tailored to release
payload on demand, carry large quantities of drugs or carry different drugs as means
of combinatorial therapy etc. [42, 76].

Their small size and unique characteristics offer possibilities to overcome barriers
that traditional treatment encounters [16, 62].

They are incredibly versatile. They can be organic such as liposomes, dendrimers,
polymer-based, etc., or inorganic—gold, silver, silica, etc. They come in various
shapes, sizes and have a high surface area. These properties affect their reactivity,
toughness, optical and other properties [31].Additionally, they can be easily function-
alized with various molecules. This provides the means to fine-tune their properties
and tailor them to successfully control biocompatibility and biodistribution.

1.2 Issues with a Nanocarrier Design

Innovative, multifunctional, and complex nanoparticles have been designed, and
synthesized [4, 32, 33, 36, 50, 53, 73]. However, this is not reflected in the design
nor the numbers of clinically approved nanocarriers [43].

There are many possible explanations covering different stages in their
development—from the initial approach to design to complex, expensive, and time-
consuming in vitro and in vivo testing.

Although we cannot provide a definite solution to the problem mentioned above,
in this chapter, we will give a brief overview of some issues we can encounter when
designing novel nanocarriers for anticancer treatment and how to overcome at least
some of them.

As mentioned in the introduction, in vivo fate of the molecules is determined by
their physico-chemical and biochemical properties. In the case of the nanocarriers,
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these properties depend on the nanoparticle type, molecules chosen for the function-
alization (from now on referred to as ligands), and the selected drug. Thus, a thorough
understanding of each element’smolecular structure is critical since it directly affects
their interactions and hence the structure and stability of the final complex.

When we inject a nanocarrier into the bloodstream, we need to ensure that it will
be stable in this environment so it stays in circulation long enough. However, stability
has to be fine-tuned so the drug can be released from the complex once it reaches its
target [60]. If the complex is not stable enough, the drug can be released prematurely
and cause off-site toxicity. On the other hand, if the complex is too stable, the drug
will not be released at the site of action.

A drug should also be shielded from biodegradation, immune system, and interac-
tions with other molecules during the journey since these can alter both the structure
and the intended function. To address these issues, we need to know precisely how
does a nanocarrier with specific physico-chemical properties interacts with the phys-
iological environment; how do changes in its physico-chemical properties relate to
the changes in the physiological response; which properties or combination of prop-
erties ligands need to have to obtain specific structure, so our nanocarrier interacts
with the environment in the way we predicted. Since we will inject more than one,
we need to consider their collective behavior as well.

If we are successful, our nanocarriers will reach the tumour cells. Now they need
to penetrate cells, go across the cell membrane, and deliver the drug to the site of
action [43]. To achieve this, we need to understand how the nanocarriers interact
with cells. For example, how many of them can penetrate the tumour? How deep
into the tumour do they go?We also need to consider that tumours are heterogeneous
structures containing more than one type of cell.

If we successfully overcome these hurdles, we need to know how our nanocarriers
affect the tumour. Are they stopping the further growth of the tumour, are they
successfully killing the tumour cells, how many cells? These are essential questions
for adjusting the dosage and frequency of the administration.

Once we understand these relations, we can go back to the beginning and “pro-
gram” nanocarriers’ behavior by modifying their size, shape, and surface chemistry.

Sounds pretty straightforward. So what are the issues?

Let’s consider the first step in the process—an adequate characterization of
nanocarriers’ attributes: size, composition, stability, and surface properties such as
coating density, surface area, etc. [60].

This type of information is extremely challenging to obtain experimentally.More-
over, most experimental methods are not precise enough since they lack both the
temporal and the spatial resolution necessary to investigate the dynamic changes and
behavior of such small and complex systems [6].

Even the determination of nanocarrier size, which is one of the critical proper-
ties, is difficult to achieve precisely. There are numerous methods that can be used,
such as dynamic light scattering (DLS), transmission electron microscopy (TEM),
atomic force microscopy (AFM), etc. However, some methods are not suitable for
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all nanoparticle types and will not provide the accurate data we need. For example,
TEM is not suitable for liposomes and proteins because they don’t sufficiently deflect
an electron beam, making them susceptible to imaging artifacts [60].

An additional issue is that nanocarriers are polydispersed. So after the synthesis,
instead of having a solution of nanocarriers of a particular size, we end up with some
size distribution. To consider them monodispersed, 90% of the distribution should
lie within 5% of the median size [71]. However, this is extremely difficult or even
impossible to achieve since most experimental methods used for the assessment of
nanoparticle size lack the appropriate level of resolution [69].

Other critical points are the composition and surface properties of the nanocarriers
[12]. As mentioned above, one of the advantages of using nanoparticles is the ease
of their functionalization. As we gain a deeper understanding of the overall process,
we can adjust the nanocarrier design more precisely to ensure that it ends up with
the desired properties. This can be done, for example, by attaching multiple ligand
types (e.g., one ligand type can be chosen to decrease non-specific interactions with
proteins, one to increase the solubility, one can serve as a targeting ligand). As a
result, the nanocarrier composition is getting more and more complex. Composition
affects the structure and surface properties, and these parameters define the behav-
ior of nanocarriers in vivo. If we want to have control over nanocarriers’ in vivo
mechanism of action, we need an accurate description of these properties. But their
characterization and validation of our structure become challenging since there are
no universal techniques for quantifying, for example, targeting ligands [20].

Although there are numerous additional examples we could mention about this
stage, it would fall out of the scope of this chapter. So we will move forward to the
cellular uptake of the nanocarriers.

There are several methods used to assess the cellular uptake, e.g., confocal
microscopy, flow cytometry, etc. However, the issue with these methods is that it
is difficult to distinguish between internalized material from the material bound to
the outer plasmamembrane [51].As in the case of physico-chemical characterization,
the underlying issue is the lack of the proper level of resolution.

Efficacy of the nanocarriers is assessed in vivo. However, there are obstacles,
too, since the structure and size of the tumour itself can also affect the nanocarrier’s
efficacy. For example, small tumours, up to 2mm in size, usually don’t yet have
developed vasculature, which can affect nanocarrier tumour penetration. Uptake can
also vary with tumour growth rate [2]. Since properties we want to assess depend
on multiple factors, we need to be careful when designing the experiments and
interpreting results.

We can conclude that to establish a successful pipeline for designing and testing
novel nanocarriers, we need accurate methods for their physico-chemical character-
ization, as well as a thorough understanding of the relation between their physico-
chemical properties and tumour biology [60].

This requires knowledge from different fields, from chemistry, physics, biology,
and medicine. In addition, methods with varying levels of resolution are also a
requirement: from the atomistic level for the precise physico-chemical character-
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ization, the cell level for accurately describing nanocarrier-cell interactions, and the
whole tumour level for assessing overall nanoparticle efficacy.

Although this is possible to achieve experimentally, this approach is time-
consuming, expensive, and not precise enough for establishing a successful and
effective pipeline from the bench to the clinic.

2 Multiscale Problem Requires Multiscale Solution

As evident from the previous sections, we need to consider a wide range of length and
time scales: molecular, cellular, tissue, etc. The accurate description on each level
provides information about different aspects necessary for successful nanocarrier
design. However, a common drawback among experimental methods is an inade-
quate resolution. In some cases, to measure one property with the appropriate level
of accuracy, we need to perform multiple analyses. This is time-consuming and
expensive.

Moreover, the clinical impact is not an independent phenomenon but is a result of
the interactions of elements acrossmultiple scales [17]. Thus focusing on the isolated
elements cannot be sufficient for a complete understanding of the nanocarriers’ in
vivo behavior. Due to the versatility of nanoparticles and the wide range of their
physico-chemical characteristics, we could use no standardizedmethods. As a result,
there is no standardized pipeline that connects different resolutions.

These issues can be resolved with the computational approach. There are many
available methods and models describing the relevant length and time scales with the
precision inaccessible to the experiments. By combining them, we are presented with
the opportunity to investigate realistic biological scenarios while significantly reduc-
ing the time for the new design testing and the costs associated with the experimental
approach.

However,most computationalmodels still focus on a single scale.Multiscalemod-
eling presents a new set of challenges since we need to consider many components
and parameters from different scales. We also need to consider the complex relation-
ship between them [15]. But advances in model development and in computational
power over the years are making this possible.

The first question that arises in Multiscale modeling is how to choose appropriate
methods and scales?

Although in an “idealistic” scenario, we would consider everything from the
quantum level to the entire organism, this would not be the best approach. Apart
from this being technically extremely difficult or even impossible to achieve (at
least from the perspective of the computational cost), we would also end up with
an enormous amount of information, most of which would probably be redundant.
Thus, it would become challenging to extract valuable details or patterns.
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Instead, we need to focus on elements that contribute the most to the phenomena
or process we want to investigate and choose the model accordingly.

When choosing the models (i.e., length and time scales), it is necessary to find
the balance between the accuracy and the computational cost.

In this chapter, we will describe the Multiscale model for evaluating the efficacy
of nanocarriers in cancer treatment. Thus, we focused on three different scales—
Molecular scale, Cell scale, and Tissue scale.

1. Molecular scale—Single-atom resolution. Molecular level description of the
nanocarriers is a crucial aspect that has a significant impact on the clinical outcome.
If we understand, on this level, which properties determine the nanocarrier structure
and dynamics, we can have more control over the final product. This step can lead
to a more informative and efficient design of the nanocarriers.

Molecular dynamics (MD) simulations give us an atomistic level description of
the simulated systems. This level of resolution is mostly experimentally inaccessible.
Since physico-chemical characterization is the fundamental step when designing a
nanocarrier, MD can provide detailed insight into its structure and dynamics.

This can be a standalone method used before synthesis to save time and resources.
We can run a preliminary evaluation of a large number of different systems. Based on
this assessment, we can choose themost promising designs and start the experimental
work from there.

As a part of theMultiscale model for testing treatment efficacy,Molecular dynam-
ics simulations can be used to extract realistic parameters for the higher scale simu-
lations.

2.Cell scale—Single cell resolution. The efficacy of cancer treatment depends to
a great extent on the extravasation to the tumour site, and tissue penetration within a
tumour [40, 58]. To realistically evaluate the nanocarrier’s efficacy, we need to under-
stand nanocarrier-cell interactions and the movement of the nanocarriers through the
tissue. This resolution can be accessedwith stochastic reaction-diffusion simulations.

Input parameters for this scale can be obtained from both the Molecular scale and
the Tissue scale. Due to the computational cost of running simulations of nanocarri-
ers’ effect across the entire tumour (Tissue scale), we can take representative “tumour
slices” and use themas a starting point in theCell scale. To assess the effect of realistic
nanocarriers parameters, as inputs, we can use the results obtained in the Molecular
scale.

3. Tissue scale—Whole tumour resolution.
To accurately model nanocarriers’ efficacy, first, we need to model a realistic

tumour [57].
To generate an entire realistic tumour, we can run simulations of tumour growth

from a single cell by performing agent-based modeling. A tumour can be modeled
as a heterogeneous structure with the vasculature. Results of this level of simulations
can be translated into input parameters for the Cell scale.

In the following sections, we will briefly describe different scale methods and
models: From top to bottom (Tissue scale, Cell scale, and Molecular scale).
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As evident from the title, we will focus mainly on the role ofMolecular Dynamics
simulations in this multiscale approach. First, we will provide a brief theoretical
overview of Molecular Dynamics and some practical aspects to be considered when
running the simulations. Next, we will give an overview of the basic analysis we can
perform to describe our system accurately. Finally, we will discuss how all of these
scales are connected and what information we can obtain.

2.1 Tissue Scale—Generating a Virtual Tumour

Virtual tumour growth can be simulated using PhysiCell—an open-source, agent-
based 2D and 3D modeling framework [19].

It incorporates two aspects:
(1) at the scale of the individual cell, it operates as an agent-based environment.

Tumour dynamics emerges as a result of a large number of interacting cells. Cells
respond to the cues from theirmicroenvironment and, in turn, influence theirmicroen-
vironment. This aspect includes sub-models for cell fluid and solid volume changes,
cycle progression, apoptosis, necrosis, mechanics, and motility, as well as functions
for diffusion, decay, cell-based secretions/uptake, and bulk supply/uptake.

(2) Agent-based environment is coupled with the biotransport solver—BioFVM
[18], a multi-substrate diffusion solver that deals with vectors of diffusing substrates.
This aspect includes functions for diffusion, decay, cell-based secretions/uptake, and
bulk supply/uptake for each substrate.

Although PhysiCell is suitable as-is, here we will refer to the modified version
of PhyisiCell created within EVONANO platform [58] since it includes cancer stem
cells and vasculature growth. Both of those elements have a substantial impact on
tumour dynamics.

Cancer stem cells are a minor subpopulation of cancer cells. They are capable
of unlimited self-renewal, differentiation, and tumorigenesis [14]. Additionally, they
are insensitive to most cancer treatments, and their numbers within a tumour often
increase after the chemotherapy [35, 67].

They also have an essential role in tumour vasculature growth.
When the tumour reaches approximately 1–2mm, it still relies on the pre-existing

vasculature for blood supply. However, it is usually not enough to support further
tumour growth [27, 66]. This means that cancer cells don’t get enough nutrients
or oxygen, which leads to necrotic cell death and the state of hypoxia. Under these
conditions, cancer stem cells survive and produce factors that stimulate angiogenesis,
promoting tumour progression [8, 67].

Thus, both of these elements are important in modeling realistic tumours and
treatment.
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Fig. 1 Tumour growth illustration

In simulations, tumour growth is initialized with a single cancer cell. Then, it
grows until it reaches the size of approximately half a million cancer cells. At that
moment, the simulation is stopped (Fig. 1).

The output of this simulation is heterogeneous, vascular tumour. This output is
used to generate representative scenarios for the Cell scale simulations.

2.2 Cell Scale

At this point, we have our virtual, vascular, and heterogeneous tumour created using
the higher-scale simulations. The next step is the investigation of how nanocarrier
parameters influence tumour dynamics.

Another level of resolution is necessary since the modeling of nanocarriers’ influ-
ence over a whole tumour would be computationally expensive. It would also limit
the degree of the dynamics we aim to investigate.

To circumvent this, we can use the output from the Tissue scale simulations and
systematically select representative sections of tissue—“tumour slices” to test the
chosen nanocarriers.

For the investigation of nanocarrier-cell interactions and movement of nanocar-
riers across the tissue, we can use STochastic Engine for Pathways Simulations
(STEPS)—an open-source stochastic simulator of reaction-diffusion systems in arbi-
trarily complex 3D geometries [10, 28, 70].

In this model, the Michaelis–Menten reaction network is used to model
nanocarrier-cell interactions using the following equation [22]:

N Pf + R−→
Ka ,Kd C

−→
Ki N Pi + R (1)
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where N Pf represents the free nanocarrier, R—receptors on the cell membrane, Ka

and Kd represent the binding rate of the nanocarriers to the receptors and the dis-
sociation rate of nanocarriers release from the receptors, respectively. C represents
nanocarrier-receptor complexes, N Pi is internalized nanocarrier, and Ki is nanocar-
rier internalization rate.

Nanocarriers can move with the probability:

D/L2 (2)

where D is the diffusion coefficient, and L is the length of a cell.
The amount of nanocarriers that can extravasate into the tumour within an ideal-

ized murine model, N P0, is calculated using the following equation:

N P0 = I DW
P I DS2L

Vt
× NA

ME
(3)

where I D is the total injected dose of nanocarriers, W—the weight of the mouse,
P I D represents the percentage of the injected dose that reaches the tumour, S—the
characteristic length scale of the cell, L—the total required penetration depth, Vt—
the tumour volume, M the molecular mass of the nanocarrier payload, E the total
number of payload molecules, and NA—Avogadro’s constant.

The following equation gives the threshold of nanocarriers required to induce cell
death:

N Pmax = PS3NA

E
(4)

where P is Potency and is represented by the IC90 of the anti-cancer drug.We assume
that the nanocarriers’ cytotoxic effect is a function of the total carried payload, and
that the nanocarrier vector does not alter the properties of the drug.

Since the overall idea is to test the influence of realistic nanocarriers, input param-
eters for Virtual cell scale are obtained from the Molecular Dynamics simulations.

3 Molecular Dynamics

Since the focus of this chapter is Molecular dynamics, first, we will provide a brief
theoretical introduction. Next, we will describe the general simulation procedure
and some practical aspects to be considered. Then we will go over basic analysis
which can be used to characterize nanocarriers. Finally, we will show how we can
incorporate obtained parameters in previously described Cell scale and Tissue scale
models.
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The overall concept of Molecular Dynamics

We start by setting the system’s initial conditions—a list of all atoms’ positions,
connections, and velocities. Then we specify the interaction potential (force field),
which will allow us to derive forces among them. By using Newton’s second law,
we can understand how those forces affect their motions. Finally, by allowing the
atoms to interact for a certain amount of time, we get the dynamic evolution of the
investigated system.

The collective behavior of the atoms in the system provides the connection
between the molecular scale to meso/macro phenomena. Once we know the micro-
scopic states of the system at a particular time, we can calculate the macroscopic
properties using statistical mechanics.

What are some advantages of performing this type of simulations?

In general, Molecular Dynamics (MD) simulations can be used to study the structure
and dynamics of the nanocarriers, various molecular perturbations and to observe
dynamic processes over time [29].

Molecular Dynamics provides dynamic evolution of the system on a scale of a
single atom.WithMD, we can see the precise position of atoms at each point in time.
This is impossible to achieve experimentally.

Atomistic molecular dynamics simulations accurately represent physical, chem-
ical, and thermodynamical properties. Thus, they can provide insight into how dif-
ferent parameters affect the structure and surface properties of the nanocarriers.

Moreover, we can set and precisely control the conditions of the simulations. This
allows us to run simulations under various conditions, meaning we can discover the
effects of a wide range of perturbations.

Virtual “synthesis” of the nanocarriers is quick, easy, and requires substantially
less financial resources than its experimental counterpart. Furthermore, by using this
method, changes in the composition can be easily introduced, and a large number of
different systems can easily be simulated and compared.

For example, we can examine nanoparticle properties such as shape and size,
mechanical or elastic properties [3, 5, 41, 63]. We can focus on the nanocarriers and
investigate the effects of different properties on their structure, such as the effect of
the ligand/drug hydrophobicity/hydrophilicity, the impact of ligand length and distri-
bution, surface coverage, etc. [34, 55, 63]We can compare structures of nanocarriers
in different solutions, in presence/absence or ions, etc. [25, 39]. We can go deeper
into the main interactions between functionalized nanoparticle and drug or interac-
tions between the nanocarrier and cell membrane [25, 59]. We can investigate the
parameters of the protein corona by simulating interactions between the nanocarrier
and blood proteins [24]. All of these aspects are very challenging to investigate with
any experimental technique [29].

However, there are limitations to this method. Due to the size of the systems, we
can mainly focus on small systems and short time scales [48] (Thus, the need for the
coupling with the higher scale simulations).
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3.1 Atomistic Molecular Dynamics Simulations

As mentioned, in the atomistic MD simulations, we model the motion of each atom.
Each atom is represented as a ball, centered at the nucleus, with the precise mass. On
this scale, electronic properties are averaged. Instead of modeling them explicitly,
electrons are represented as the partial charges on the atoms. Bonds between the
atoms are represented as strings with a specific force constant and resting length.

Parameters for force fields (interaction potentials) used at this scale are derived
from the experiments and/or quantum mechanical calculations. General description
of the forcefields—FF includes bonded (associatedwith covalent bonds, bond angles,
and bond dihedrals) and non-bonded terms (associated with van der Waals forces
and electrostatic charge).

Vtotal = Vbonded + Vnonbonded (5)

where
Vbonded = Vstretch + Vbond + Vdihedral + Vimproper (6)

and
Vnonbonded = Velectrostatic + VvanderWaals (7)

Since parameters for the force-field can be derived from different sources, there
are multiple force fields that can be used.

Selecting the correct one is very important. The choice depends on the type of
molecule you want to simulate and the question you would like to answer. All force
fields are approximations, and their parameters are optimized to reproduce exper-
imental data under particular conditions. For example, the force field applied to
calculate the solvation free-energy of amino side chains and proteins might not be
suitable for the same type of calculations of inorganic nanocarriers. Special care
should be taken when considering electrostatic interactions and the functional form
of the local potentials, polarization effects, the representation of the solvent, etc.
[54]. The Force field has a significant impact on the reliability of the results and thus
should be chosen with caution.

The next step in the simulations is the integration ofNewton’s equations ofmotion.
This is done in discrete time steps. The timestep is determined by energy conserva-
tion at short times. It should be chosen, so it is significantly shorter than the shortest
relevant time scale in the simulation. At each timestep, an enormous number of cal-
culations are occurring. Apart from slowing down the simulation, at long timescales
and larger systems, the number of required timesteps can become so large that simu-
lations become exceptionally computationally expensive. Thus, the size of the system
and timescale become obvious limitations for this method.

The main output of the simulations is the molecular trajectory file which contains
the time-evolving coordinates of a system and optionally velocities and forces.
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3.2 Practical Aspects

The first step in MD is the preparation of the systems we want to simulate.
In general, we start by using the coordinates of known crystal structures. X-ray or

NMR structures can be a good starting point since the coordinates of most atoms are
known with certainty. We might need to add some missing atoms to the structures,
e.g., hydrogen atoms.

However, in this chapter, we are focused on the design of new nanocarriers. We
aim to test theoretical designs before synthesis, meaning that the crystal structure is
not available. Although we can run simulations of synthesized nanoparticles (which
is also necessary to validate our results), the advantage of the MD is that we can
simulate a large number of different systems. Based on the results, we can choose
the most promising ones and start the experimental work from there to save time and
resources.

The lack of crystal structure is not an issue since we can build our system from
scratch. The first step is the preparation of the structure. This can be done inAvogadro
software [21]. After we prepare our structure, we need to assign molecular electro-
static potential-based charges, which can be done using, for example, RED server—
an open web service [65]. Since we are focusing on the nanocarriers, which usually
comprise more than one element (nanoparticle, ligands, drugs), we can prepare these
structures separately and then assemble them using another free software—Packmol
[38].

When our system is assembled, we add appropriate solvent molecules (e.g., water,
salt, ions). Then, finally, we assign the force field parameters.

In general, after we prepared the system, there are several essential steps in MD
simulations: Initialization, equilibration, and the production phase (Fig. 2).

Fig. 2 General steps in molecular dynamics simulations
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1. Initialization. This phase requires specifying the initial coordinates and veloc-
ities of all atoms in the system (nanoparticle, water, salt, ions, etc.). Initial velocities
of atoms are set so that the total kinetic energy of the system corresponds to the
value of the targeted temperature. Although prepared structures are a good starting
point, there could still be some overlaps of atoms in different residues. So we need
to perform the Energy minimization to adjust the initial structure to the force field
and relax possible steric clashes.

2. Equilibration. After the Initialization, the system is out of equilibrium. During
the heating to the targeted temperature, kinetic energy is added to the system. So
during this phase, there is an exchange between kinetic and potential energies. This
means that properties we want to measure are still fluctuating to a large extent.
Equilibration is achieved when the fluctuations occur about the mean value. It is
difficult to know in advance how long we should run the equilibration phase. The
best approach would be to observe the property we want to measure and wait until it
approaches the constant value.

3. Production. Once the equilibrium is reached, the production phase starts. This
phase is the only part of the dynamics simulation from which data is accumulated.
Since the properties we are interested in represent the time average behavior of the
atoms at the equilibrium, to obtain statistically significant results, simulations should
be run long enough to match the kinetics of the investigated phenomena.

There is awide range of softwarewe can use forMolecular Dynamics simulations,
such as AMBER [9, 68], GROMACS [1], CHARMM [7], LAMMPS [47], NAMD
[46] etc. General simulation protocol is the same for all packages, and they all
perform similar computations[29]. However, computational efficiency can vary. This
depends on the hardware, whether you can use GPU, is the code parallelized, etc.
When choosing the software, you should consider aspects relevant to the systems
you wish to investigate. For example, it might be important whether you can model
different systems and solvent environments in this software, use different force fields
for the system parametrization, are there incorporated specific tools for the trajectory
analyses, etc.

3.3 Data Analysis

Once we obtain molecular trajectories, many different analyses can be performed
depending on the goal and the system of interest. Here, we are focusing on the most
common ones since different systems require different analysis types, and going
through all of the possibilities would fall out of the scope of this chapter.
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3.3.1 Radial Distribution Function

One of the most common analyses is the calculation of the Radial distribution func-
tion, RDF.

RDF describes how the density of the surrounding particles varies as a function of
distance from the reference particle. Thus, it is a valuable tool to describe the atomic
structure of the simulated system. RDF describes the local structural organization
around any given atom and can provide information about the dynamical change of
the structure. In general, calculating RDF involves determining how many particles
are within a distance of r and r+dr away from a particle.

We will illustrate this on the example from our previously published paper [34].
In this example, we have simulated gold nanoparticle 5.5nm in diameter function-

alized with two ligands types: (i) ligand which carries the hydrophobic anticancer
drug Quinolinol, (ii) zwitterionic background ligand used to increase the solubility
of the system. The ratio of the ligands carrying the drug to the background ligands
was 1:1. Simulations were run in the aqueous solution.

In Fig. 3 we have the corresponding RDF graph.
Coordinate origin (0.0) on the graph represents the center of the gold nanoparticle

core (the central gold atom is taken as a reference particle). The red line on the RDF
graph describes the density of all atoms in the entire coating, and the broadness of this

Fig. 3 RDF plot and
simulation snapshots. The
first frame shows the
nanocarrier structure before
the simulations, while the
second frame shows the
equilibrated structure after
the simulations. In the
snapshots ligand carrying the
drug is colored grey,
Quinolinol is colored red,
and the background ligand is
colored light blue with the
dark blue zwitterionic
terminal end. RDF graph
corresponding to the second
frame is shown below the
snapshots [34]
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peak indicates ligand flexibility. Suppose we pay attention separately to the Quino-
linol and zwitterionic terminal end. In that case, we can see that the average density
of Quinolinol is closer to the gold nanoparticle surface than the average density of
the zwitterionic terminal end. This tells us that a large number of the Quinolinol
molecules are hidden beneath the coating, away from the surface in contact with the
solvent. This is in agreement with the hydrophobic nature of the drug molecules.

The fact that most of the Quinolinol molecules are hidden below the coating is
also evident from the simulation snapshots. The left image shows the theoretical
structure where we can visually observe the amount of the attached drug (colored
red). In the right snapshot, which represents the equilibrated structure in the aqueous
solution, we can see that the blue color is dominant on the surface, which represents
the background ligands.

3.3.2 Radius of Gyration and Asphericity

The radius of gyration, Rg , provides an estimate of the compactness of the investi-
gated structure. This is an essential aspect since it reflects its stability. The more this
value fluctuates, the less the structure is stable.

It is calculated as:

< R2
g >=

(
1

M
< [

N∑
i=1

mi [ri ] − R]2 >

)
(8)

where R is the center of mass of the molecule, M is the total mass of the molecule,
ri is the position of the ith atom,mi is the mass of the ith atom, N is number of atoms
for the given molecule.

Apart from the radius of gyration, it is also possible to estimate the radius of
gyration tensor S. Its eigenvalues are principal moments of the gyration tensor (λx ,
λy , λz).

< R2
g >= λ2

x + λ2
y + λ2

z (9)

The principalmoments can be combined to calculate other related shape properties
such as Asphericity (b):

b = λ2
z − 1

2
(λ2

x + λ2
y) (10)

Asphericity is a measure of deviation from spherical symmetry. It is limited
between values 0 and 1.

When
λx = λy = λz = 0 (11)



224 M. Kovacevic and I. Balaz

the distribution of particles is spherically symmetric.
Asphericity can be helpful in describing the shape of the nanoparticle, e.g., under

physiological conditions.

3.3.3 Nanoparticle Size and Coating Thickness

Besides the shape, the size of the nanocarriers is another crucial parameter since it
plays a significant role in their biological behavior. Thus determining it accurately
is of utmost importance.

Considering that, we chose to pay more attention to describing the role of Molec-
ular Dynamics simulations for this purpose. To do so, we will show an example of
gold nanocarriers.

For this example, we will use gold nanoparticles with the core size of 5.5nm func-
tionalized with one ligand type carrying the different anticancer drugs: Niclosamide
(NCL), Gemcitabine (GEM), Panobinostat (PAN), and Quinolinol (OQL). Core size
and the ligand carrying the drugs are the same for all systems.Wewanted to illustrate
how the change in just one part of the system affects the overall nanocarrier structure.

Size can be estimated even before running the simulations. The first step would be
the literal “drawing” of the molecule (Fig. 4).We can do that based on our knowledge
of the atoms, their sizes, types of bonds they can form with other atoms, length of
those bonds, angles, etc. So any chemist drawing the samemolecule will draw highly
similar structures.

If we represented these structures in three dimensions, we could see how our
nanocarriers look (Fig. 5). We can do this using tools such as Chimera [45], VMD
[30], Avogradro etc.

Once we have prepared the desired molecular structures, we can simply measure
the distance between terminal atoms on opposite sides of the nanocarriers to assess
the size (Fig. 6).

Structures in Fig. 5 represent the best estimate we can get at this point. However,
they are not realistic. Although they might look like this in a vacuum, the structure
will probably change once we put them in a solution. This change in structures
happens due to numerous interactions we cannot consider in advance, such as solvent
effects and all the intra- and intermolecular interactions. This can certainly affect the
overall size, shape, and coating thickness of the nanoparticle. If our systems have
some degree of flexibility, the theoretical prediction of the nanocarriers’ size can be
over- or underestimated. Thus, this is one of the most crucial properties to determine
accurately since the change in the structure can affect its function.

The measured size of the nanocarrier (dm) can be calculated from the trajec-
tories based on the average distance between the center of the nanocarrier and the
terminal groups [26].

In this example, we also calculated the predicted size of the nanocarriers, i.e.,
nanocarrier size before the simulations (dext ). This is not a necessary step in the data
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Fig. 4 Structures of the nanocarriers used in this example. Each nanocarrier consists of a gold
nanoparticle core (AuNP) 5.5nm in diameter. Ligand carrying the drug is the same for all sys-
tems and is colored grey. NCL100: AuNP functionalized with ligand carrying anticancer drug
Niclosamide. Niclosamide molecule is colored green, PAN100: AuNP functionalized with ligand
carrying anticancer drug Panobinostat (colored pink), OQL100: AuNP functionalized with ligand
carrying anticancer drug Quinolinol (colored red), GEM100: AuNP functionalized with ligand
carrying anticancer drug Gemcitabine (colored orange)

Fig. 5 Three-dimensional representation of the theoretical design of the nanocarriers. Each
nanocarrier consists of a gold nanoparticle core (AuNP) 5.5nm in diameter. Ligand carrying the
drug is same for all systems and is colored grey a NCL—AuNP functionalized with ligand car-
rying anticancer drug Niclosamide (Niclosamide molecules are colored green), b GEM—AuNP
functionalized with ligand carrying anticancer drug Gemcitabine (colored orange), c PAN—AuNP
functionalized with ligand carrying anticancer drug Panobinostat (colored pink), d AuNP function-
alized with ligand carrying anticancer drug Quinolinol (colored red)
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Fig. 6 An example of theoretical prediction of the nanocarrier size

analysis. However, we wanted to demonstrate to what extent the measured size can
deviate from the predicted to illustrate the importance of these calculations. The
measured size of the nanocarrier (dm) was calculated from the trajectories as the
average distance between the center of the mass of the Au core and the terminal
groups. Predicted size of the nanocarriers, i.e., nanocarrier size before the simu-
lations (dext ) was calculated as the average distance between the center of mass of
the Au core and averaged lengths of extended ligands. Visual results are shown in
Fig. 7.

As it can be observed from Fig. 7 there are significant deviations in both size and
shape for all simulated nanocarriers. In this example, deviations of measured size
from the predicted are in the range from 15–20%.

When it comes to nanoparticle functionalization, besides the size and shape, prop-
erties of the coating have an important role since they are linked to the dynamics
and interactions between the nanocarriers [52]. Coating thickness can be calculated
from the trajectories as the thickness which contains 97% of the coating atoms [23].

3.3.4 Solvent Accessible Surface Area

The solvent accessible surface area—SASA describes the area of the molecular
surface which is exposed enough so that molecule of interest can interact with the
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Fig. 7 Visual comparison of the predicted versus measured nanoparticle size. First row represents
the Predicted structures of nanocarriers. Second row represents the equilibrated structures in aque-
ous solutions after the simulations. Column a NCL—AuNP carrying the Niclosamide (colored
green), Column b GEM—AuNP carrying the Gemcitabine (colored orange), Column c PAN—
AuNP carrying the Panobinostat (colored pink), Column d OQL—AuNP carrying the Quinolinol
(colored red)

solvent molecules. These interactions have a crucial role in the stabilization of the
structure and molecule solubility.

It is most often calculated using the “rolling ball” algorithm. In this approach,
a probe sphere, representing the solvent molecules, rolls over the Van der Waals
surface and maps out the area. Probe estimates water molecule’s radius—a typical
value is 1.4Å.

SASA can also be calculated for separate fragments to see if they are adequately
exposed, i.e., available for interactions with the surrounding environment.

In the case of the nanocarriers with covalently attached drugs, these SASA calcu-
lations can be used to determine the percentage of the accessible drugmolecules. This
value represents the “yield” of the equilibrated nanocarrier, i.e., if our starting struc-
ture before the simulation initially had X drug molecules attached, how many drug
molecules are available for interactions with their environment in a solution—this
value is used as Payload parameter in the Cell scale simulations.

Accurately assessing the carried payload is crucial since it can significantly affect
the dosage and frequency of administration in a realistic scenario.
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3.3.5 Diffusion Coefficient

Diffusion coefficient is a fundamental transport property. It plays a major role in
describing mass transfer processes.

It can be calculated from the obtained trajectories using the Einstein relation:

2nD = lim
t→∞

(
MSD

t

)
(12)

where n is the number of dimensions, D is the diffusion coefficient, MSD is the
mean square displacement and t is time.

MSD is calculated by using distance traveled from the initial position.
The obtained values of the Diffusion coefficient can be directly used as input for

higher scale simulations.
Since the diffusion is a dynamic property, simulation time should be carefully

chosen since it is unlikely we can achieve convergence with short simulation time.

4 How Is It All Connected?—A Short Summary

This section will describe how to connect the above-described models and scales for
efficient testing of nanocarriers against representative biological scenarios (Fig. 8).

The first step is the generation of the virtual tumour via modified PhysiCell. A
tumour is set to grow from a single cell. While growing, it is developing vascula-
ture. Simulation is stopped when a tumour grows to approximately 500.000 cells. A
tumour is heterogeneous, containing both cancer cells and cancer stem cells. We use
this virtual tumour to generate representative scenarios for the nanocarrier testing.

Fig. 8 Overview of the multiscale model for evaluating nanocarrier’s efficacy. At the Molecular
scale, we analyze the nanocarriers structure and dynamics. We extract realistic parameters to use
as inputs for the Cell Scale. At the Tissue scale we generate a virtual, heterogeneous tumour. We
use the grown tumour to extract the representative biological scenarios. At the Cell scale, we test
the chosen nanocarriers efficacy across the tumour slices
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To obtain realistic nanocarriers’ parameters, we perform Molecular Dynamics
simulations. The advantage of running Molecular Dynamics simulations is that
we can simulate a large number of systems and perform their detailed analyses
as described above. However, testing each design in the Multiscale model can be
computationally expensive. To save resources, we can use MD for the preliminary
assessment of nanocarriers’ structure and dynamics and choose the most promising
candidates for the higher-scale simulations.

Parameters obtained at this scale such as Nanocarrier size, Diffusion Coefficient,
Payload quantity etc. can be used as input parameters for the Cell scale (Specific
parameters are dependent on the type of the nanocarriers we want to simulate).

In the Cell scale, we consider nanocarrier-cell interactions, nanocarriers’ move-
ment across the tissue, and nanocarrier cytotoxicity. Thuswe can obtain a preliminary
picture of the chosen treatments’ efficacy for a heterogeneous tumour.

As input parameters for this scale, we use the combination of outputs from the
Tissue scale and the Molecular scale, as described above.

As in the case of Molecular Dynamics, various analyses can be performed. For
example, we can calculate the number of internalized nanocarriers, the distribution of
nanocarriers across the tissue, the number of killed cancer cells or cancer stem cells.
We can also assess the concentration of the nanocarriers necessary to kill the cancer
cells with regard to the payload quantity. With this data, we can make a preliminary
assessment of the nanocarrier efficacy. The results could also help us determine the
dosage and frequency of the administration.

On the other hand, we can make crucial connections between nanocarriers’
physico-chemical parameters and their effect on the tumour. We can achieve that
by testing multiple nanocarriers. For example, we can test nanocarriers of different
sizes, carrying different amounts of payload, nanocarriers with different diffusion
coefficients, etc. and assess how the change in nanocarrier parameters influences the
tumour dynamic. Analysis of these results can provide valuable insights that can
guide nanocarrier design.

Since the focus of this chapter is the role of the Molecular Dynamic simulation
in this Multiscale model, some details regarding the Tissue and Cell scale are omit-
ted. For more information regarding those models and their role in the Multiscale
modeling, see the work by Stillman et al. [58].

5 Conclusion

Nanocarriers show great potential in drug delivery. By taking advantage of their
small size and unique properties, we can create novel nanocarrier designs to over-
come numerous obstacles traditional cancer treatments encounter. In addition, by
improving the delivery of clinically approved anticancer therapies, we can signifi-
cantly reduce their side effects and increase their efficacy.

However, the rate of the translation of nanocarriers from the laboratory to the clinic
has been relatively slow. Although there are standardized methods and developed
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pipelines for small molecules, the existing situation is different for nanocarriers. We
need to solve many experimental difficulties to create a standardized pipeline and
speed this process up.

Designing an effective nanocarrier implies trial and error. First, each nanocarrier
needs to be synthesized and tested to assess its efficacy. Then, based on the efficacy
assessment, we take a step back and introduce modifications to improve the design.
This is extremely expensive and time-consuming.

During the testing phase, besides the accurate description of their properties on
the nanoscale, we need to understand how those properties relate to the tumour
dynamics. Obtaining this knowledge requires connecting different length and time
scales. However, a common disadvantage of in vitro and in vivo methods is the lack
of the resolution needed for acquiring precise and accurate data.

A computational approach can be used to complement the experiments. During
the years, many models have been developed to describe various phenomena with
precision inaccessible to the experimental methods spanning over all relevant length
and time scales. Multiscale simulations can connect different levels of resolution,
thus providing a preliminary assessment of nanocarrier efficacy. This approach is
significantly quicker and requiresmuch fewer resources than the purely experimental
approach.

In this chapter, we gave a brief overview of three different levels of resolution:
Molecular, Cell, and Tissue. Next, we described how they are all connected in the
presented Multiscale Model.

We paid particular attention to theMolecular Dynamics simulations and their role
within this model.

Molecular Dynamics by itself is gaining more attention in the field of Drug deliv-
ery. It operates on a resolution of a single atom, which can lead to important insights
into the structure and dynamics of the nanocarriers.

Virtual “synthesis” of the nanocarriers is more straightforward and less time-
consuming than its experimental counterpart. By using this method, changes in the
system’s composition can be much more easily introduced. This allows for a fast
preliminary investigation of a large number of systems.

In order to be confident in the method and the obtained results, validation against
the experimental values is necessary. From this necessity, we can conclude that the
description obtained with Molecular Dynamics simulations is realistic.

Outputs from MD simulations can be used as realistic parameters for the higher-
scale simulations. By integrating the molecular level of resolution with the Cell scale
and the Tissue scale, we create a computational pipeline for quick preliminary testing
of the nanocarriers’ efficacy, shortening the path from the bench to the clinic.
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A Haploid-Diploid Evolutionary
Algorithm Optimizing Nanoparticle
Based Cancer Treatments

Michail-Antisthenis Tsompanas, Larry Bull, Andrew Adamatzky,
and Igor Balaz

Abstract This paper uses a recent explanation for the fundamental haploid-diploid
lifecycle of eukaryotic organisms to present a new evolutionary algorithm that differs
from all previous known work using diploid representations. A form of the Baldwin
effect has been identified as inherent to the evolutionary mechanisms of eukaryotes
and a simplified version is presented here which maintains such behaviour. Using
a well-known abstract tuneable model, it is shown that varying fitness landscape
ruggedness varies the benefit of haploid-diploid algorithms. Moreover, the method-
ology is applied to optimise the targeted delivery of a therapeutic compound utilizing
nano-particles to cancerous tumour cells with the multicellular simulator PhysiCell.

1 Introduction

The vast majority of work within evolutionary computation has used an underly-
ing haploid representation scheme; individuals are each one solution to the given
problem [8]. Typically, bacteria contain one set of genes, whereas the more com-
plex eukaryotic organisms—such as plants and animals—are predominantly diploid,
containing two sets of genes [22]. A small body of work exists using a diploid repre-
sentation scheme, i.e., individuals carry two solutions to the given problem. In such
cases recombination typically occurs between corresponding haploids/genes in each
parent, essentially doubling the standard process, and a dominance scheme is utilized
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Fig. 1 Two-step meiosis
with recombination under
haploid-diploid reproduction
as seen in most eukaryotic
organisms (after [19])

to reduce the diploid down to a traditional haploid solution for evaluation. That is, as
individuals carry two sets of genes/variables, a heuristic is included to choose which
of the genes to use (see [4] for a review).

Eukaryotes exploit a so-called haploid-diploid cycle where haploid cells are
brought together to form the diploid cell/organism. At the point of reproduction
by the cell/organism, the haploid genomes within the diploid each form haploid
gamete cells that (may) join with a haploid gamete from another cell/organism to
form a diploid (Fig. 1). Specifically, each of the two genomes in an organism is repli-
cated, with one copy of each genome being crossed over. In this way copies of the
original pair of genomes may be passed on, mutations aside, along with two versions
containing a mixture of genes from each. Previous explanations for the emergence
of the alternation between the haploid and diploid states are typically based upon its
being driven by changes in the environment (after [16]). Recently, an explanation for
the haploid-diploid cycle in eukaryotes has been presented [6] which also explained
other aspects of their sexual reproduction, including the use of recombination, based
upon the Baldwin effect [2]. The Baldwin effect is here defined as the existence
of phenotypic plasticity that enables an organism to exhibit a different (better) fit-
ness than its genome directly represents. Over time, as evolution is guided towards
such regions under selection, higher fitness alleles/genomes which rely less upon the
phenotypic plasticity can be discovered and become assimilated into the population.

The rest of the paper is arranged as follows: the next section presents the new
understanding of howeukaryotic organisms evolve.A new simplified haploid-diploid
algorithm is then presented, which maintains the basic mechanisms of the natural
case. Finally, the newapproach is applied to ahigh-throughputmulticellular simulator
to find potentially new therapeutic designs that maximise cancer tumour regression.
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2 Eukaryotic Evolution and the Baldwin Effect

Key to the new explanation for the evolution of eukaryotes is to view the process
from the perspective of the constituent haploids: a diploid organism may be seen
to simultaneously represent two points in the underlying haploid fitness landscape.
The fitness associated with those two haploids is therefore that achieved in their
combined form as a diploid; each haploid genome will have the same fitness value
and thatwill almost certainly differ from that of their corresponding haploid organism
due to the interactions between the two genomes. That is, the effects of haploid
genome combination into a diploid can be seen as a simple form of phenotypic
plasticity for the individual haploids before they revert to a solitary state during
reproduction. In this way evolution can be seen to be both assigning a single fitness
value to the region of the landscape between the two points represented by a diploid’s
constituent haploid genomes and altering the shape of the haploid fitness landscape.
In particular, the latter enables the landscape to be smoothed under a rudimentary
Baldwin effect process [11], whilst the former can be seen to represent a simple form
of generalization over the landscape. Note this is in direct contrast to typical cases of
bacteria—and evolutionary algorithms—where individuals represent a single point
in the (haploid) fitness landscape only and the fitness assigned is that due solely to
their given gene combination. The same is also true in all known previous diploid
representation schemes.

Numerous explanations exist for the benefits of recombination in both natural
(e.g., [3]) and artificial systems (e.g., [20]). The latter focusing solely upon haploid
genomes and neither considering the potential Baldwin effect under the haploid-
diploid cycle. The role becomes clear under the new view: recombination facilitates
genetic assimilation within the simple form of the Baldwin effect. If the haploid
pairing is beneficial and the diploid is chosen under selection to reproduce, the
recombination process can bring an assortment of those partnered genes together
into new haploid genomes. In this way the fitter allele values from the pair of part-
nered haploids may come to exist within individual haploids more quickly than the
under mutation alone (see [6] for full details). Hence, in the emergence of more com-
plex organisms, natural evolution appears to have discovered a more sophisticated
approach to navigating their fitness landscapes.

The Baldwin effect has long been used within evolutionary computation (after
[11]). This paper aims to show how the benefits of a haploid-diploid cycle can be
exploited as a form of evolutionary computation. However, rather than just adopt
nature’s scheme under which a single individual requires both haploid genomes to
be evaluated (as in [6]), a simpler scheme is proposed as a form of post-processing
for a traditional evolutionary algorithm. This is first explored using the NK model
of fitness landscapes.
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3 The NK Model

The NK model [13] was introduced to allow the systematic study of various aspects
of fitness landscapes (see [14] for an overview). In the standardmodel, the features of
the fitness landscapes are specified by two parameters: N , the length of the genome;
and K , the number of genes that has an effect on the fitness contribution of each
(binary) gene. Thus, increasing K with respect to N increases the epistatic linkage,
increasing the ruggedness of the fitness landscape. The increase in epistasis increases
the number of optima, increases the steepness of their sides, and decreases their
correlation.

The model assumes all intragenome interactions are so complex that it is only
appropriate to assign random values to their effects on fitness. Therefore for each of
the possible K interactions a table of 2(K+1) fitnesses is created for each gene with
all entries in the range 0.0 to 1.0, such that there is one fitness for each combination
of traits (Fig. 2). The fitness contribution of each gene is found from its table. These
fitnesses are then summed and normalized by N to give the selective fitness of the
total genome. The results reported in the next section are the average of 10 runs
(random starting populations) on each of 10 NK functions, i.e. 100 runs, for 20,000
generations. Here 0 ≤ K ≤ 15, for N = 50 and N = 100.

4 A Simple Haploid-Diploid Algorithm

Figure3a shows a schematic of a traditional evolutionary algorithm (EA) which
exploits binary tournament selection, one-point recombination, single-pointmutation
(randomly chosen gene), and creates one offspring per cycle (steady state) which is
evaluated and replaces the worst individual in the population here. Figure3b shows
how the learning mechanism described above is implemented on top of that process.
As can be seen: a traditional population of evaluated haploid individuals ismaintained
(A); a temporary population of diploid solutions is created from them by copying

Fig. 2 An example NK model (N = 3, K = 1) showing how the fitness contribution of each gene
depends on K random genes (left). Therefore there are 2(K+1) possible allele combinations per
gene, each of which is assigned a random fitness. Each gene of the genome has such a table created
for it (right, centre gene shown). Total fitness is the normalized sum of these values
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(a)

(b)

Fig. 3 A schematic of the traditional evolutionary algorithm (a) and of the simple haploid-diploid
algorithm (b)
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each haploid individual and then another haploid is chosen at random (B), with the
fitness of the two haploids averaged (C); binary tournament selection then uses those
fitnesses to pick two diploid parents (D); the haploid-diploid reproduction cycle with
two-step meiosis as shown in Fig. 1 is then used for the two chosen parents (E); one
of the resulting haploids is chosen at random, mutated (single-point), and evaluated
(F); the offspring haploid is inserted into the original population replacing the worst
individual (G).

Figure4 shows example results from running both the standard EA and the
haploid-diploid EA (HDEA) on various NK fitness landscapes. Here population
size P = 30. As can be seen, when K > 4, the HDEA performs best for N = 50
and K > 2 for N = 100 (T-test, p < 0.05). Thus, as anticipated, the simple Baldwin
effect process proves beneficial with increased fitness landscape ruggedness due to
its ability to smooth the underlying shape. Figure5 shows examples of how this is

(a) (b)

Fig. 4 Showing examples of the fitness reached after 20,000 generations on landscapes of various
size (N ) and ruggedness (K ). Error bars show min and max values

(a) (b)

Fig. 5 Showing examples of the fitness reached after 20,000 generations with differing population
sizes (P)
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also true for different P , although the benefit is lost for higher K when P = 10.
Related to this, since the HDEA makes a temporary population of diploids contain-
ing extra copies of randomly chosen haploid solutions, it might be argued that a
larger population is available to selection than in the standard EA. Moreover, as the
underlying traditional haploid population converges upon higher fitness solutions,
the random sampling could be increasing their number and, thereby, altering the
comparative selection pressure over time. However, results from simply creating a
temporary haploid population of size 2P , in the same way as the temporary diploid
population, does not alter performance significantly (not shown here, e.g., see [12]
for discussions of dynamic population sizing in general).

Whilst it is beyond the scope of this paper to exhaustively review previous diploid
EAs (DEAs)(see [4]), a simple diploid version of the traditional EA has been cre-
ated and explored. Here the fitness of the diploid is the average of its two constituent
haploids and the corresponding haploids undergo one-point recombination. For com-
parison, without a dominance mechanism, populations contain either half as many
individuals or are run for half as many generations as the EA and HDEA to maintain
the same number of function evaluations. The results find no significant difference
in performance over the traditional EA for any of the parameters explored here (not
shown).

The findingswith this abstractmodel are now explored in the context of simulating
nano-particle therapy delivery for cancer tumour regression within PhysiCell v.1.5.1
(see [17] for an overview of computational modelling in cancer biology).

5 PhysiCell: A Physics-based Multicellular Simulator

Among an increasing amount of computational models [17, 21] studying different
aspects of cancer physiology, PhysiCell [10] is one of the leading ones. The open
source simulator is based on a biotransport solver (BioFVM [9]) and simulates a
multicellular environment. While PhysiCell simulates cell cycling, death states, vol-
ume changes, mechanics, orientation and motility, it relies on BioFVM to simulate
substrate secretion, diffusion, uptake, and decay. A significant advantage of Physi-
Cell is its open-source code that enables addition of new environmental substrates,
cell types, and systems of cells, resulting in a general-purpose tool for investigating
systems with multiple kinds of cells. This includes the ability to design cell-cell
interaction rules to create a multicellular cargo delivery system that actively deliv-
ers a cancer therapeutic compound beyond regular drug transport limits to hypoxic
cancer regions. We are currently exploring the use of evolutionary computing and
other related techniques to optimise the design of such nano-particle (NP) delivery
systems [1, 18, 23–27].

To evaluate the efficiency of the design of these NP delivery systems, the 2-D
anti-cancer biorobots scenario of PhysiCell v.1.5.1 [10] was studied. This scenario
utilizes three types of agents to simulate a high-throughput testing of a simple tar-
geted drug delivery therapy. Namely, these types of agents are cancer cells, worker
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cells and cargo cells. Cancer cells consume oxygen and secrete a chemoattractant.
The resulted gradient in oxygen concentration is employed to steer NPs, simulated
as worker cells. These worker cells can be bonded with cargo cells, simulating the
therapeutic compound. When a worker cell carries a cargo cell, it executes a random
walk (migration) towards the gradient of the oxygen and, thus, towards accumulation
of cancer cells. Whereas, when a worker cell does not carry a cargo cell it executes
a random walk towards the area of the cargo cells. These random walks or migra-
tions are controlled by input parameters of the simulator, in the range [0, 1], with 0
representing Brownian motion and 1 deterministic motion.

Finally, cargo cells simulating the therapeutic compound, can attract worker cells
by exuding another simulated chemoattractant (which diffuses under BioFVM rules).
As described before, worker cells can carry the cargo cells and deposit them in the
affinity of cancer cells, resulting in apoptosis of these cells. The specific proximity
is given by the parameter defined as cargo release O2 threshold.

As per the initial example [10] and other relevant studies [18], in the 2-D anti-
cancer biorobots scenario an initial 200 µm radius tumour is simulated to grow for
7days. Then, 450 cargo cells and 50 worker cells are added in a simulated vein close
to the tumour. Note here that while in previous studies a random number of each
type of cells with its mean as in the aforementioned was added, here we add exactly
450 and 50 cells for every simulation to alleviate one factor of stochasticity. The
simulated drug delivery system is simulated for 3 more days and then the results are
analyzed.

One paradigm of this simulation (whole 10days) takes approximately 5min of
wall-clock time on an Intel® Xeon® CPU E5-2650 at 2.20GHz with 64GB RAM
using 8 of the 48 cores. To accelerate the computations and further alleviate the
effect of the stochastic nature of the simulator on the results, a single tumour was
used for testing every possible individual in the search space. For each test, one
pre-grown tumour (for 7days) was loaded to the simulator and the treatment was
applied immediately. The test was finalized after 3days from the introduction of the
treatment, resulting in a minimization of wall-clock time to approximately 1,5min.
A static sampling approach is used, where the average of the outputs after 5 runs
of the simulator with the same set of parameters was examined. The objective was
determined as the remaining amount of cancer cells in the simulated area after the
3days of treatment.

The search space was defined as a 6-dimensional space, with the 6 most pro-
lific parameters for the behaviour of worker cells (or simulated NPs). Namely, the
parameters under investigation were: the attached worker migration bias [0,1]; the
unattached worker migration bias [0,1]; worker relative adhesion [0,10]; worker rel-
ative repulsion [0,10]; worker motility persistence time (minutes) [0,10]; and the
cargo release O2 threshold (mmHg) [0,20]. The rest of the parameters on the sim-
ulator are not altered from the initial distribution of the simulator [10] and depicted
in Table1.
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Table 1 Unaltered parameters of PhysiCell simulator

Parameter Value

Maximum attachment distance 18 µm

Minimum attachment distance 14 µm

Worker apoptosis rate 0 min−1

Worker migration speed 2 µm/min

Worker O2 relative uptake 0.1 min−1

Cargo O2 relative uptake 0.1 min−1

Cargo apoptosis rate 4.065e-5 min−1

Maximum relative cell adhesion distance 1.25

Maximum elastic displacement 50 µm

Damage rate 0.03333 min−1

Repair rate 0.004167 min−1

Drug death rate 0.004167 min−1

Cargo relative adhesion 0

Cargo relative repulsion 5

Elastic coefficient 0.05 min−1

Motility shutdown detection threshold 0.001

Attachment receptor threshold 0.1

6 Results of HDEA Optimization on PhysiCell

Initially the option to load a tumour rather than simulate its growth for 7days was
investigated. In Fig. 6 the boxplot of 100 simulations for each initialization option
with the same input parameters is illustrated. When comparing the initial growth
(7days tumour growth and 3days treatment simulation, mean=475.06, SD=32.9,
median=480, kurtosis=3.3515) with the loading tumour alternative (loading a
tumour and 3days treatment simulation, mean=494.12, SD=29.11, median=491,
kurtosis=2.7698), the latter produces more consistent results (based on smaller
standard deviation and kurtosis). Additional to the aforementioned acceleration of
computations (from 5min to 1,5min) the loading tumour was selected for the tests
presented in the following.

To study the performance of HDEA, another control algorithm was utilized to
optimize the behaviour/design of worker cells, namely a steady-state genetic EA.
The population size was set to P = 50, the selection and replacement tournament
size to T = 3, a uniform crossover probability to X = 80% and a per allele mutation
rate toµ = 20%with a uniform random step size of range s = [−5, 5]%. TheHDEA
was set up with the same parameters as the EA in order for the comparison to be
meaningful. All comparison runs started by evaluating a randomly produced, same
for each run, initial population (P = 50) under PhysiCell simulator, and then using
the corresponding EA to evolve the design of worker cells, with a computational
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Fig. 6 Boxplot of 100
samples for each of the
initialization options
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Fig. 7 Average and
confidence levels (95%) of
the best individuals per
evolution step for both
algorithms for all 30 runs
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budget of 100 individual evaluations (100 individuals × 5 samples = 500 PhysiCell
simulations). In total, 30 comparison runs were executed.

In Fig. 7 the evolution of the best individuals found by the two algorithms is illus-
trated. Specifically, the average and confidence level at 95% for the best individuals
in all 30 runs are considered. Throughout the evolution steps it is apparent that the
HDEA algorithm is generally finding better solutions faster (it learns faster). More-
over, the final average of best solutions found by HDEA is better than the one by the
genetic algorithm. The smaller range of the 95% confidence levels of HDEA reveal
a better consistency in the solutions found by this algorithm.

Figure8 shows the relative performance of the average solutions over time for
both approaches. As can be seen, the HDEA finds fitter solutions. Note the zoomed
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Fig. 8 Average and
confidence levels (95%) of
all the individuals per
evolution step for both
algorithms for all 30 runs
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in region of evaluations 90–100 for a clearer comparison. Although, after 100 eval-
uations, the best solutions (Fig. 7) are not statistically significantly better (Wilcoxon
signed-rank test, p = 0.3763), the average solutions (Fig. 8) are better (Wilcoxon
signed-rank test, p = 0.0256). It can be noted that the best solution found by the
HDEA was significantly better (Wilcoxon signed-rank test, p = 0.0215) for the first
ten runs of the thirty shown here.

In Figs. 9 and 10 the boxplots of the parameters of the best individual discovered
during the 30 runs by GA and HDEA, respectively, are presented. In Figs. 11 and
12 the scatter plots of the parameters of the best individual discovered during the 30
runs by GA and HDEA, respectively, are depicted. It is clear that the most prolific
parameter value for optimizing the design of NPs is the cargo release O2 threshold

Fig. 9 Boxplot of
parameters of best
individuals found by GA (in
normalized ranges).
Parameters: (1) attached
worker migration bias (2) the
unattached worker migration
bias (3) worker relative
adhesion (4) worker relative
repulsion (5) worker motility
persistence time (6) and the
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Fig. 10 Boxplot of
parameters of best
individuals found by HDEA
(in normalized ranges).
Parameters: (1) attached
worker migration bias (2) the
unattached worker migration
bias (3) worker relative
adhesion (4) worker relative
repulsion (5) worker motility
persistence time (6) and the
cargo release O2 threshold
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parameter. The majority of solutions are quite close to 11mmHg, similar to findings
from previous works [10, 18]. Although, for three of the parameters the results can
not be conclusive (namely, attached and unattachedworkermigration bias andworker
relative adhesion having almost uniform distribution like boxplots), the graphs for
the other two parameters can convey the fact of the solutions being skewed towards
smaller values for worker relative repulsion and higher values for worker motility
persistence time.

7 Conclusion

In the standard evolutionary computing approach each individual solution can be
seen to represent a single point in the fitness landscape. Typically, the same is true
of bacteria in natural evolution. It has recently been suggested that natural evolution
is using a more sophisticated approach with eukaryotes, exploiting a generalization
process, whereby each individual represents a region in the fitness landscape [7].
Of course, landscape smoothing can be achieved by numerous mechanisms (after
[11]) but they all require extra fitness evaluations. The scheme presented in this
paper is intended to exploit the Baldwin effect through what is essentially simple
population manipulation rather than through altering the underlying representation
and evaluations of the standard evolutionary computing approach.

It can also be noted that the shape of the fitness landscape varies based upon the
haploid genomes, which exist within a given population at any time and how they are
paired. This is significant since, as has been pointed out for coevolutionary fitness
landscapes [5], such movement potentially enables the temporary creation of neutral
paths, where the benefits of (static) landscape neutrality are well-established (after
[15]).
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Fig. 11 Scatter plot of parameters of best individuals found by GA for all 30 runs

The proposed HDEA method was also compared with a simple haploid EA in a
more complicated simulator (PhysiCell). Again, the HDEA seems to perform better
than the traditional and well-established haploid method. After analyzing the results
of the methodology on the cancer treatment simulator, it can be concluded that it
reaches fitter solutions faster, despite the high stochasticity injected into the fitness
landscape to capture some of the dynamics of the biology. Current work is exploring
the inclusion of a sexual selection-like process into the HDEA to further improve
performance.
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Fig. 12 Scatter plot of parameters of best individuals found by HDEA for all 30 runs
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Drawbacks of Bench to Bed Translation
of Nanomedicines for Cancer Treatment

Petra Gener , Anna Ulldemolins, and Simo Schwartz Jr.

1 State of the Art

Resistant metastatic cancer is at the moment an incurable disease and an unmet
clinical need. It is one of the most lethal diseases and is causing thousands of deaths
annually throughout the world. Treatment resistance and metastasis in vital organs
account for 90% of cancer related deaths [1, 2]. The current treatments involve
resection and the use of chemotherapeutics and radiations. However, thesemodalities
are commonly associated with limited therapeutic effectiveness, recurrence, and side
effects.

In this sense, nanomedicine-based drug delivery systems have brought a new
hope for cancer patients. The word “nano” has always suggested an innovation. It
is opening the cancer field to a whole new perspective, approaches and possibil-
ities. Nanotechnology-based drug delivery systems (nano-DDS) are able to incor-
porate drugs or gene products with active anti-cancer activity but poor solubility,
low bioavailability or inadequate toxicological profile. This leads to an improved
efficacy and a superior bioavailability/biodistribution of the carried compound. This
widens the therapeutic window of many cytotoxic drugs allowing the use of higher
doses, while at the same time, lowering adverse effects of the treatment. Besides,
the nanoparticles shell may protect the DNA, RNA content from degradation, thus
securing its correct delivery to target cells. Nanocarriers also permit the combination
of different treatment compounds or strategies within the same platform offering
potential blocks of various parallel pathways activated in cancer resistant cells [3].
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An additional benefit of nanomedicines is their ability to bypass drug efflux pumps as
they are internalized by endocytosis. This internalization process increases the intra-
cellular accumulation of the drugs and ensures its release in the perinuclear region,
away from membrane transporters [4].

Even though the potential of nanomedicines to ameliorate solubility, pharmaco-
logical profile and to reduce adverse effects of chemotherapeutic drugs is highly
regarded and its use in the clinics augments over the last decade, its clinical transla-
tion is still suboptimal [5, 6]. Thousands scientific papers have been published, and
billions of dollars have been invested in cancer nanomedicine in the last decades,
however just few nanomedicines have reached clinical trials (only 2%) and even less
has been commercialized (#15) for cancer treatment (Table 1) [3]. The main prob-
lems of these nanocarriers have been frequent adverse immune responses, unspecific
targeting capacity, a poor cost-effectiveness ratio, and a variety of manufacturing
and scale-up difficulties. Besides, the lack of clear regulatory standard and use
of inadequate preclinical models complicate the translational process [7]. A new
focus and new paradigm of this prospective scientific field is thus urgently needed.
Nanomedicine for cancer treatment has a great potential but we should learn the
lesson and to circumvent the problems during its preclinical development, in order
to circumvent the vain clinical testing.

2 Cancer Biology

There are several reasons for the limited clinical translation of targeted cancer
nanomedicines. Some of them include the poor understanding of the biology of
cancer. There are many gaps in understanding of cellular and molecular processes
that modulate NPs behaviour and fate in vivo efficacy.

Until the nineties, the initiation and progression of a tumour was explained by
the clonal cancer model, in which cancer was thought to be driven by accumulated
somatic mutations that confer uncontrolled growth, a more aggressive behavior and
higher fitness to a malignant transformed cell [8, 9]. All cancer cells were considered
equally malignant and equally responsive to treatment that was mostly attacking cell
division machinery.

Later it was shown that not all the cells within the tumour presented the same
tumourigenic potential. With this knowledge, a hierarchical model (also referred
to as the cancer stem cell (CSC model)) has been described. Accordingly, only a
small and distinct subpopulation of Cancer stem cells (CSCs) is alleged to have the
capacity to generate and maintain tumour growth [10, 11]. In this model, cancer cells
are created from a precursor cell (being a CSC the cell of origin), which went through
either symmetric (generating two CSCs or two differentiated cancer cells (DCCs))
or asymmetric (generating a CSCs and a DCCs) divisions [11, 12]. Differentiated
cancer cells (DCCs) do not present the ability to self-renew indefinitely and can only
generate cells of their same type. On the other hand, CSCs can generate multiple and
heterogeneous tumour subpopulations that differentiate into different lineages [13,
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Table 1 Ulldemolins et al. [3] Clinically approved nanoformulations for oncology in Europe and
United States ordered by year of approval

Name Formulation Type Indications Year

Doxil/Caelyx PEG-ylated liposomal
doxorubicin

Liposome Kaposi sarcoma,
Ovarian cancer,
Multiple myeloma

1995
(FDA)

DaunoXome Liposomal daunorubicin Liposome Karposi sarcoma 1996
(FDA)

DepoCyt Liposomal cytarabine Liposome Lymphoma,
leukemia

1999
(FDA)

Myocet Liposomal doxorubicin Liposome Breast cancer 2000
(EMA)

Eligard Leuprolide acetate and
[PLGH (poly
(dl-lactide-coglycolide)]
polymer

Polymeric
nanoparticle

Prostate cancer 2004
(FDA)

Abraxane Albumin-bound paclitaxel
nanoparticle

Albumin-bound
nanoparticle

Breast cancer,
Non-small cell
lung cancer,
pancreatic cancer

2005
(FDA)

Oncaspar PEG-ylated
L-asparaginase conjugate

Protein
nanoparticle

Acute
lymphoblastic
leukemia (ALL)

2006
(FDA)

Ontak Interleukin (IL)-2 receptor
antagonist with diphtheria
toxin

Protein
nanoparticle

Cutaneous T-cell
lymphoma

2008
(FDA)

Mepact Liposomal mifamurtide Liposome Osteogenic
sarcoma

2009
(EMA)

NanoTherm Iron Oxide Nanoparticles Metallic
nanoparticle

Brain tumours 2011
(EMA)

Sylatron PEGlyated interferon
alfa-2b

Protein
nanoparticle

Melanoma 2011
(FDA)

Adcetris CD30- targeted antibody
(Brentuximab) and
MMAE conjugate

Antibody–drug
conjugate

Non-Hodgkin
lymphoma

2011
(FDA)

Marqibo Liposomal vincirstine
sulfate

Liposome Acute
lymphoblastic
leukemia

2012
(FDA)

Kadcyla HER2-targeted antibody
(Trastuzumab emtansine)
and microtubule inhibitor
conjugate

Antibody–drug
conjugate

HER2-positive,
metastatic breast
cancer

2013
(FDA)

Oniyde Liposomal irinotecan Liposome Pancreatic cancer 2015
(FDA)

(continued)
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Table 1 (continued)

Name Formulation Type Indications Year

Vyxeos Liposomal daunorubicin
and cytrabine

Liposome Acute myeloid
leukemia (AML)

2017
(FDA)

Apalea Paclitaxel micellar Micelle
nanoparticle

Ovarian cancer 2018
(EMA)

Hensify Hafnium oxide
nanoparticles

Metallic
nanoparticle

Soft tissue sarcoma 2019
(EMA)

14]. In terms of cancer treatment, according to the hierarchical model, the complete
eradication of the CSCs population should be enough to eradicate the tumour and
prevent disease relapse [15, 16]. Therefore, strong efforts have been invested, over
the past decade, in the identification of CSCs within the tumour for targeted treat-
ments. It was noted that CSCs are more permissive to DNA damage and express
numerous multidrug resistant channels on their cell membrane and many currently
used chemotherapeutics and radiation techniques are ineffective against them [3].
Besides, they can enter an undetectable quiescence state when the conditions of the
TME are not favourable and proliferate afterwards [17].

Hence,CSCs sustain very effectively tumour growth and are responsible for cancer
recurrence, metastatic spread, and current treatment failure [3, 17–21]. After treat-
ment, the amount of CSCs frequently rises when compared to other tumour cells
types. Of note only a few CSCs are needed for tumour regeneration in vivo. In this
context, even though clinicians often observe tumour shrinkage at the first stages of
multimodal treatment, often remaining resistant clones of CSCs survive and eventu-
ally cause tumour relapse and very aggressive tumour types with limited treatment
alternatives [3, 17–21].

Some inconsistencies of the hierarchic model came after the observation that even
after successful CSCs eradication, tumour growth and spreadmay be evidenced [22].
Thus a newdynamic stochasticmodel has been suggested andCSCeradication strate-
gies become even more complex [11, 15, 17, 18, 22, 23]. This model postulates the
possibility that every tumour cell can become a tumour-initiating cell, considering
the possibility of inter-conversion among cell phenotypes. According to this model,
tumour is composed by different cell populations that maintain a stable communi-
cation among them [15, 18]. Through this communication, they can “sense” if one
specific subpopulation of the tumour cells is redundant, absent or has been depleted.
When this happens, cells of this type are generated, allowing each cell subpopula-
tion to return to their fixed phenotypic equilibrium. In this model, the amount of
CSCs seems to remain constant through time, to maintain the mentioned equilib-
rium within the tumour micro environment (TME). And all this happens through
interconversion between DCCs and CSCs [15, 17, 18]. CSCs may differentiate into
DCCs (giving heterogeneity to the tumour) and DCCs can be reprogrammed and
gain CSC properties, such as self-renewal capacity and treatment resistance, as well
as increased expression of stemness genes [15, 22]. According to a stochastic model,
any cell of the tumour can initiate the progression of the disease due to the existing
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phenotypic plasticity, and further, any cancer cell can recover stem cell-like pheno-
type by dedifferentiation [15, 17, 24]. The dynamism of phenotypic reversion seems
to be comparable to the dynamism observed during epithelial-mesenchymal tran-
sition (EMT) processes, in which cancer cells can switch between epithelial and
mesenchymal phenotypes. Consequently, CSCs present generally a mesenchymal
phenotype, while other cancer cells show mostly epithelial characters [18].

Although the hierarchical model and the stochastic model have different consider-
ations regarding the importance of CSCs in tumour initiation and progression are not
mutually exclusive thanks to cellular plasticity (Fig. 1) [17]. Basically, the tumour is
formed in a hierarchical manner, which is unstable since constant stochastic actions
allow the introduction of newly hierarchically organized cell populations [15–17].

Fig. 1 Dynamic CSC model [17]. A tumour is highly complex heterogenic dynamic entity that
involves cellular components (CSCs,DCSs, fibroblasts, immune cells,mesenchymal cells etc.), cell-
secreted functional molecules (growth factors, hormones, metabolites, cytokines, chemokines etc.),
extracellular vesicles (exosomes, vesicles etc.) and extracellularmatrix (ECM).Cell sub-populations
within tumours are characterized by their respective densities and rates, and the alteration of these
densities and rates alters the equilibrium state of the tumour as a whole biological system. Self-
renewal and differentiation rates of cancer stem cells are finely tuned in order to ensure tumour
progression
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In summary, tumour should be considered as a highly complex and heterogenic
dynamic entity that evolves in time, adapting and therefore surviving to adverse
conditions [3, 17]. To design new effective treatment it is thus important to think in
a wide perspective and not to focus on one single target. A whole tumour mass and
its ability to adapt and to change in adverse conditions should be considered.

A tumour is composed of a heterogeneous mix of different environments and cell
types, such as already mentioned CSCs, DCCs, but also CAFs (cancer associated
fibroblasts), mesenchymal cells, tumour-infiltrating immune cells, endothelial cells
and stromal cells. All of them are located within the extracellular matrix and together
contribute to disease progression [16, 17, 20, 25]. They all are part of the local
TME (Tumour Micro Environment) and present different mesenchymal and stem-
like phenotypes. Likewise, the constant exchange of information (cytokines, growth
factors etc.) among these cells is essential to guarantee survival and progression of the
tumour and to orchestrate the coordination and collaboration of different cells [17,
18, 26, 27]. Cancer cells interact with other cells from the TME through direct cell-
cell contact and/or by paracrine signaling. Both cellular and non-cellular components
of the niche maintain stable the stemness potential of the tumour, and regulate CSC
plasticity [17, 18, 26, 27].

Altering the equilibrium of the different cell populations is often translated into
tumour aggressiveness and treatment resistance. In addition, epigenetic alterations
contribute to the therapeutic resistance of the tumour by granting protection from
therapy-induced damage to tumour cells. Elucidating the molecular mechanisms that
govern cellular plasticity may be essential to overcome the challenge that current
therapies face when fighting against cancer. Effective targeting therapies need to be
developed to eliminate the roots of continuously evolving tumour cell populations
and to avoid the regeneration of CSCs [3, 17, 27].

3 Biological Barriers

Nanomedicines designed based on current knowledge to treat cancer have to be
able to reach targeted cells. This might be difficult however since after adminis-
tration (intravenous or oral) thaymay find several barriers (gastro-intestinal tracts,
endothelial cells, cell membrate etc.). Besides, nanomedicines must remain stable in
the bloodstream and should be able to reduce body clearance by reticuloendothelial
system (RES) and the mononuclear phagocyte system (MPS) escape. The size of
the resultant nanoparticle is crucial in this sense. Of note, nanoparticles greater than
10 nmprevent premature excretion by kidneys, while nanoparticles below 200 nm are
able to pass through the microcapillaries without producing embolism [28]. Cellular
uptake and biodistribution is determined also by the surface charge. In general, posi-
tive charges facilitate cell internalization compared to neutral and negatively charged
nanoparticles but are often more toxic [28]. Importantly, the surface charge also
affects the interaction of nanoparticles with the biological fluids since in biolog-
ical fluids nanoparticles’ surface is surrounded by non-covalently bound protein
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corona [29]. The composition of protein corona is dynamic and depends on chem-
ical composition, surface functionalization, shape, porosity, surface crystallinity, and
hydrophobicity/hydrophilicity of used nanomaterial. Attachment of different surface
proteins causes different interactions and/or behaviour of nanomedicines in term of
hemolysis, activation of thrombocytosis, and cellular uptake. Often nano-surfaces
are coated with opsonins that destine the nanoparticles to phagocytosis. Conversely,
CD47 glycoprotein coating evades phagocytosis [30]. In order to bypass phagocyte-
mediated cellular barriers, Poly (ethylene glycol) (PEG) is often used as surface
coating of the drug-delivery system [31]. PEGylation has the ability to enhance reten-
tion time. Basically, it prolongs the circulation time by increasing its hydrophilicity
and reducing the rate of glomerular filtration. Furthermore, it forms a hydrophilic
shield that is able to mask the antigenic sites of the proteins and provides protection
from reticuloendothelial cells, proteolytic enzymes, and phagocytes. Therefore, it
delays recognition by the immune system and increases the chance of nanomedicines
to target the desired tissues or cells [31]. Our current knowledge regarding protein
corona is still insufficient. Theoretical modelling, such as molecular dynamics simu-
lation, could be a powerful tool for predicting interactions and aiding mechanistic
understanding of its formation [29].

In general terms, it is believed that nanomedicines tend to accumulate within the
tumour tissue thanks to enhanced permeability and retention (EPR) effect. However,
the presence of the EPR effect is not a general occurrence (i.e. absent in micro-
metastasis) and the specific entry to cancer cells may be challenging. The EPR effect
in clinical tumour therapy is likely overestimated. Besides, there is the existence of
elevated tumour interstitial fluid pressure that reduces the efficacy of drug delivery
by nanoparticles. The increased interstitial fluid pressure has been reported in many
solid tumours, such as breast, colorectal cancers, and melanoma [32].

Another way to increase cancer cell penetration is the specific targeting
of nanomedicines. Even this may look like a perfect solution; often targeted
nanomedicines extravasate into the tumour vicinity and bind cells with high affinity
just in the outer layer of the TME. Thus, they cannot easily penetrate to the inner
parts of the tumour. This phenomenon is known as the binding site barrier (BSB)
which prevents deeper penetration of nanomedicines into the tumours. Specifically,
the BSB limits diffusion through the TME and results in unintended internalization
of nanomedicines by stromal cells located near blood vessels. Themajor components
of the BSB are CAFs. Besides, the proximity to the blood vessels and expression of
protein receptors further complicate the penetration of nanomedicines into tumour
cells [33].

Yet, the BSB and the interstitial fluid pressure have not been completely taken into
account in preclinical studies due to the existence of discrepancies between animal
models and human tumours [34]. The biggest issue is the disproportion between
small marine tumours compared to size of human tumour that led so far into a poor
translation of preclinical studies of penetration [3].
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4 Immune Reaction

Another example of how the current preclinical standards have poor translation
capacity is the existence of the potential immunogenicity of nanoparticles. It is
well known that immune-mediated adverse effects might appear after administra-
tion of nanoDDS. Even though a number of clinically relevant side effects have been
reported in this regard, immuno-deficient mice are commonly used for validation
[35]. In this regard, themore common toxicities linked to NP failure include: erythro-
cyte damage, thrombogenicity (platelet aggregation, plasma coagulation), cytokine-
mediated inflammation and cytokine storming, pyrogenicity, and anaphylaxis and
other complement activation mediated reactions, as well as recognition and uptake
by the eticuloendothelial system [36].

The immune response of any nano-matherial and/or DDS remains unpredictable.
However, it is known that any physicochemical properties (size, biocompatibility,
and surface chemistry) of used nanomedicine may play an important role in the
activation of the immune system. The introduction of a targeting ligand on the
surface may further change the immune system. Pre-clinical and clinical screening
for immunotoxicities of used nanomedicines remains to be a big challenge in the
frame of correct characterization of DDSs. Similar studies are based just on the
estimation of immunoreactive contaminants, such as excipients and linkers [36].
Although there are current standardmethods, they are insufficient to address the broad
spectrum of biomarkers that indicate possible immunotoxicity of nanomedicines. In
addition, there is an absence of consensus on well characterized reference mate-
rials. Therefore, preclinical studies often depend on nanomedicines with known
clinical immunotoxicities (e.g. Doxil for complement activation and anaphylaxis)
[36]. Besides, as mentioned before, the use of immunosuppressed animals unables
to determine immunotoxicities related to nanomedicines. For this reason, in clinical
studies, patients are constantly pre-medicated with immunosuppressors to prevent
adverse reactions. Screening for these toxicities in preclinical development would
help to prevent potentially toxic formulations [3].

Recently, immunodeficient mice engrafted with human immune systems have
been established and are a powerful tool for the next generation of patient derived
xenograft (PDX) models. PDX models allow small parts of the human tumour in
the murine environment. In humanised PDX models, human hematopoietic stem
cells (HSCs) are introduced in the immune deficient mice after gamma irradiation.
As a result the pre-clinical studies may progress in complex TME within a human
immune system. For example, it has been already reported a triple negative breast
cancer PDXmodel with humanized mice that provides evidence that supports its use
for the pre-clinical investigation of immune-based therapies [35, 37]. Unfortunately,
the nowadays considerably expensive production of these models limits their wider
use [3].
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5 Targeting

Many hopes and efforts were deposited in the synthesis of targeted nanomedicines.
Targeting is supposed to specifically identifymalignant cells, and subsequently facili-
tate ligand-mediated cellular uptake as a result of receptor-mediated endocytosis [10].
Many nanoformulations with active targeting were studied in order to reduce drug
resistance while increasing the effective amount of drug delivered to the tumour
cell, however non is in the marked yet (Table 2) [3]. Engineering of DDSs with
active targeting increases considerably its complexity since it makes it more diffi-
cult, time consuming. Besides, surface targeting may considerably increase potential
immunogenicity of the whole system [36]. In addition, numerous limitations exist
for clinical applications of some active targeting drugs because of their rapid elim-
ination by the reticuloendothelial system and high tumour interstitial fluid pressure
[38]. A lot of efforts are devoted to develop the “perfect NPs” with a wide range of
specific ligands in their surface during preclinical development. It is fascinating what
bioengineering is capable to achieve and all the complexity that can be designed and
synthesized in a single platform. However, over the last years it has been demon-
strated that translationality gets poorer when complexity gets richer. Up to date, the
most clinically successful NP is Abraxane. This albumin-bound paclitaxel NP is a
simply engineered NP, however very elegant, since albumin is recognized by gp60
receptors of the endothelial cells that guide the extravasation of Abraxane [39].Many
methods of functionalization are published, but most of them lack reproducibility.
The functionalization process is very complicated and requires different conditions
for each efficient surface modification. It involves a multi-step processing to formu-
late complex targeted NPs which in turn compromise final production yields [3]
(Fig. 2).

Further, there is an actual unmet need to synergize passive and active targeting to
improve the accumulation of nanoparticles at the desired site while at the same time
enhancing their intracellular penetration [38, 40].

6 Cost, Regulation, Scale Up

Investment in nanomedicine in the early 2000s accelerated the development of
nanoformulations that are currently available in the market. However, even with
the sales success of some of them (e.g. Abraxane), there are financial challenges
that hamper the development of new nanoformulations. As it has been previously
explained, it is not easy to demonstrate improved efficacy and safety compared to
other validated and marketed products for the same indication. Indeed, the majority
of approved nanodrugs are based on currently approved drugs which face reduced
financial risk because the efficacy and safety of the active ingredient had already
been established [41]. On the contrary, more complex economic considerations are
involved when developing a nanodrug that contains a new chemical entity.Moreover,
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Fig. 2 Extravasation and cell targeting [3]. The abnormally wide fenestrations in the blood vessels
and the lack of lymphatic drainage facilitate extravasation of nanomedicines. Once in the TME, the
targeting moiety enables its interaction with the desired cells providing and active targeting

the complexity to design a specific ligand and the conjugation techniques make the
whole process more expensive with a difficult scale-up. The cost of using complex
chemistry, controlled quality manufacturing and scaled production is elevated [41].

Apart from all the high costs involved, regulatory requirements alsomake difficult
market entry. Various regulatory agencies like EMAand FDA started their discussion
on the classification of nanomaterial and how to regulate them to ensure proper
efficacy and safety of these materials. For example, the regulatory system in Europe
allows themarketing authorization applicants to receive scientific counselling during
early stages of R&D. Also, The Nanotechnology Characterization Laboratory at the
NationalCancer Institute in theUScollects all the data onnanomedicines in oncology.
Indeed, integration betweenmaterials and translational issues, suchmore appropriate
disease models, are essential for developing accurate regulation of nanomedicines
[42]. Moreover, standardized protocols for the purification and isolation processes
are also needed. These protocols should be scalable to translate the techniques into
large-scale EVs production under the GMP [41, 42].

The success of any product, including nanomedicines, relies on its large-scale
industrial production and commercialization. Therefore, the scientific commu-
nity should pay more attention to the large-scale industrial production after their
successful development of the laboratory scale. A critical issue lies in the challenge
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of scaling-up nanomaterial synthesis and formulation from the lab to industrial scale
while maintaining control over their diverse properties. Studying these phenomena
early on in the development of a therapeutic agent often requires partnerships between
the public and private sectors which are hard to establish [43, 44].

Part of the problem lies in the fact that nanostructured drug delivery systems have
grown into increasingly complex structures with poorly understood biological fates.
Size, surface charge, morphology, drug release profiles and interaction with blood
components have all been shown to be key parameters that influence the biomed-
ical outcome of nanocarriers in vivo. Controlling these numerous parameters in a
reproducible manner over intricate structures can be problematic, as well as diffi-
cult to bring to industrial standards. Accordingly, recent studies have highlighted the
importance of developing simple and robust manufacturing methods that ensure the
proper formulation of nanomaterials in large scales [45, 46].

Another critical issue lies in the challenge of scaling-up the synthesis of a nanocar-
rier’s constitutive materials. Guidelines from the pharmaceutical industry in terms
of good manufacturing practice and pharmaceutical quality can be applied, but the
nature and complexity of nanomaterials carry their extra set of challenges. Indeed,
while any scale-up of laboratory processes is difficult, nanomaterials production is
made more challenging by the fact that subtle variations in the synthesis and manu-
facturing processes can result in significantly different products. It is necessary to
implement a robust quality control system in place, validating batch-to-batch consis-
tency and biological equivalence. Identifying critical parameters that might affect
the reproducibility of nanomaterial properties early on and monitoring these param-
eters on multiple batches is a good practice which can minimize the appearance of
reproducibility issues later on [43, 45, 46].

7 Future Perspectives of Nanomedicine for Cancer
Treatment

Cancer still remains as one of the deadliest diseases worldwide. New treatments and
therapeutic approaches are thus considered necessary. In this context, drug delivery
into resistant cancer cells under the shield of nanonomedicine may represent a solu-
tion to avoid the undesirably common side-effects and to promote the efficiency of
the therapy. Even though the use of synthetic nanoparticles has been in the limelight
for the past years, its clinical translation and consequent improved patient outcome
is few and far between. There is a clear need to focus on existing nano-carriers,
combination therapies, patient selection and ways to enable rapid and more efficient
clinical translation in order to ameliorate the present poor clinical outcomes. Since
there are a lot of unknown and unexplored outcomes, regarding the behaviour of DDS
within the biological system,mathematical models and software with the help of arti-
ficial intelligence (AI) may help the clinician to choose the best possible option for
each patient. It is necessary to promote the entrance of new nano-products in clinical
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phases including newmaterials (i.e. hydrogels, extracellular vesicles). Hopefully, the
current and recent generalized use of nanoparticles in clinics, like the new Covid-
19 vaccines, will prompt further clinical use of prospective nanomedicines also for
treatment of advanced cancer.
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Swarms: The Next Frontier for Cancer
Nanomedicine
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Abstract Nanomedicine refers to medical products developed using nanotech-
nology and has the potential to radically change how we diagnose and treat cancer.
While the use of nanomedicines has increased in the clinic dramatically, problems
persist over the lack of an agreed definition, creating difficulties for safety (including
toxicity profiles), governance and transparency. This review assesses the utility of
nanomedicines in healthcare, clarifying key concepts in the literature, examining
past, present and future nanomedicines and analyzing gaps in current regulations.
Advances in nanomedicine offer unique opportunities including programmable and
controllable nanoparticles (nanobots) that work cooperatively (nanoswarms), rather
than individually, to achieve a targeted, personalized, and intelligent cancer treatment.
Swarm behavior can be designed using a systems approach as in silico modelling
has now advanced to the point of being a useful tool for selecting nanoparticles that
optimize treatment outcomes. We need to understand what the first-in-human clin-
ical trial of nanoswarms should/will look like, and anticipate the associated ethical
questions that may arise. To aid clinical adoption of nanoswarms in cancer treatment,
a harmonized nanomedicine vocabulary is needed alongside a robust, specific and
overarching regulatory framework that can guide researchers, regulators and other
key stakeholders.
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1 Cancer Nanomedicine

1.1 Cancer

Cancer is one of the leading causes of death globally, although cancer survival rates
differ significantly between different countries. Relatively high (and rising) survival
rates in high-income countries are due to accessible early detection, quality treatment
and survivorship care, with much lower survival rates in low- and middle-income
countries [1]. Human cells multiply through cell division, but when abnormal or
damaged cells multiply this can cause a growth or lumps of tissue called a ‘solid
tumour’. These tumours can be cancerous (malignant) or non-cancerous (benign)
and can sometimes spread to other parts of the body causing a secondary tumour (or
‘metastasis’), which is the major cause of death from cancer [2, 3]. Current cancer
treatments (notably chemotherapy and radiotherapy) cause many side-effects as they
cannot differentiate between healthy and cancerous tissues, meaning that healthy
tissue is also killed alongside the cancerous. Solutions such as nanomedicines,
with triggered release for tailor-made pharmacokinetics, have the potential to offer
effective treatments without the deleterious side-effects of current approaches.

1.2 Nanomedicine

Nanomedicine refers to medical products developed using nanotechnology with the
aimof preventing, diagnosing,monitoringor treatingdiseases aswell as offering tools
for personalizedmedicine [4]. By providing newways to deliver drugs to difficult-to-
reach target sites, nanomedicines can be used to achieve the same therapeutic effect
at smaller doses than their conventional counterparts, for example due to their nano
size, which improves their solubility and bioavailability [4, 5]. Advancements of in
silico tools that allow multi-scale simulations of nanoparticle transport barriers can
facilitate effective exploration of the nanoparticle design space to optimize and select
properties of nanoparticles [6]. Nanomedicines are driven by the need to develop
therapies that have fewer side-effects, and that aremore cost-effective than traditional
therapies, in particular for cancer [7, 8]. To achieve this goal, novel nanomaterials,
a deep understanding of biology, and computational tools are emerging as the next
frontier in nanomedicine drug development [9].
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1.3 Current State of the Art (Research and the Clinic)

The pharmaceutical industry is responsible for the research, development, produc-
tion, and distribution of medications. The market has experienced significant growth
during the past two decades, and pharma revenues worldwide totaled 1.27 tril-
lion U.S. dollars in 2020 with 99.5 billion pharmaceutical sales in oncology alone
[10, 11, 12]. Nanomedicine sales, including cancer nanomedicines from DOXIL®
(liposomal doxorubicin) to ONIVYDE® (liposomal irinotecan), reached $16 billion
in 2015, and previous reports show the growth of the nanomedicine market size
with forecasts of $350 billion by 2025 [7, 13]. Developments in nanomedicine
engineering are expected to drive growth, and a rise in funding from government
organizations will prime the market [7, 8, 14].

Over the years, various nanoparticles have been developed to assist the delivery
of chemotherapy drugs to tumours. They have several routes of administration, as
they can be inhaled, swallowed, absorbed through skin or injected. Nanoparticles
bring multiple pharmacokinetic, efficacy, safety, and targeting benefits when they
are included in drug formulations [15]. Nanomedicines have already entered clinical
practice, and even more are being investigated in clinical trials for a wide variety
of indications, with over 25 approved for clinical use, either by the Food and Drug
Administration (FDA) in the United States, or the European Medicines Agency
(EMA) in the European Union [16]. The United States is the global leader for
nanomedicines, with the submission trend of drug products containing nanomaterials
submitted over the last decade increasing rapidly [17]. Clinicaltrials.gov is the largest
clinical trials registry with studies listed in the database conducted in all 50 States
and in 220 countries. Within this database a total of 211 active clinical trials involves
approved and unapproved nanoparticles, of which 130 are cancer trials (Fig. 1) [18].
These nanoparticle inventions include biological agents (5), medical devices (3),
diagnostic tests (4), drugs (100), procedures (5), radiation (1) or in other (12) cases
nanoparticles are used as a contrast agent, or in primary/secondary outcomemeasures
[19]. Study types include 112 phase I-III (and 12 where the phase is not applicable)
interventional studies (also called clinical trials), 5 observational studies (including
patient registries), and 1 expanded access (compassionate use) [19].

Even though more than 50% of clinical trials involving nanoparticles are cancer
trials (Fig. 1), the clinical translation of cancer nanomedicines remains low. One
reason for this is that only a small percentage of the cancer nanomedicine injection
may reach the solid tumour, limiting efficacy [21]. In addition, there is no standard
nanomedicines approval process, with approvals for clinical use often carried out on
an ad hoc basis, with no standard and specific regulatory or governance processes
in place for nanomedicines [22]. Nonetheless, progress in the clinic over the past
20 years (since DOXIL®’s approval) has been made possible by extensive efforts in
preclinical, commercial, and clinical studies [23]. Furthermore, the overall outlook
of nanoparticle drug delivery systems is promising, as they are also being developed
for diagnosing and treating not only cancer, but many other diseases, including the
rapid development of lipid nanoparticle mRNA vaccines for COVID-19 [23].
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Fig. 1 Nanoparticles in clinical trials and cancer clinical trials. Data is taken from clinicaltrials.gov
(accessed 01 Feb 2022) [20]

2 Future Nanomedicines

2.1 Nanobots

The idea of creating an artificial nanoscale world traces its origins to Feynman’s
There’s plenty of room at the bottom [24]. An estimated 10,000 different types of
biological ‘nanomachines’ are at work in the human body, performing essential
tasks making possible movement and locomotion, energy conversion, transport, and
regulating functions. Recognizing this has led to increased research on engineered
programmable nanoparticles, or nanobots, able to build and physically manipulate
their environment [25–27]. Going forward it is vital that different disciplines, ranging
from chemistry to mathematics to robotics, cooperate and learn a common language
to improve general problem-solving skills [27–29]. Experiments have shown that
nano-sized entities can perform the same kind of logic operations as a silicon-based
computer [30–36]. Thus, nanobots might one day be able to dispense drugs after
carrying out complex diagnosis and treatment programs with a high level of accuracy
and control. Some research groups (e.g. [33, 36, 37]) are already looking to move
to animal models, and the next step in the translational pathway will be first-in-
human clinical trials. This is likely in the foreseeable futurewith recent advancements
from Los Angeles–based startup Bionaut Labs, who secured a humanitarian use
device designation from the FDA to use a microrobot known as BNL-201 to treat
Dandy-Walker syndrome, a rare pediatric neurological disorder [38].
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Fig. 2 Current and future nanoparticles. Nanoparticle designs and interactions determine their
behavior in the body

A single nanobot is unable to accomplish a great deal but trillions can. However,
trillions of nanobots interacting in a complex tumour environmentwill require a coop-
erative systems approach [9], and as such, we need to focus on the next generation of
programmable nanoparticles and nanobots that work cooperatively/collaboratively
(nanoswarms) (Fig. 2). Nanoswarms build on large numbers of agents (nanoparti-
cles/nanobots) that interact with each other (e.g. through communication) or their
environment to achieve a cooperative task (e.g. find and target a tumour, coordi-
nate delivery of a drug, make decisions about a tumour and its treatment, optimise
nanoparticle delivery) inspired by swarm behaviors in nature (e.g., in ants, birds,
cellular systems, etc.) [39, 40].

2.2 Nanobot Design

Developing robots on the nanoscale comes with a unique set of engineering chal-
lenges, which lead to additional challenges for clinical translation (discussed below
in Sect. “Challenges in the clinical pathway”). Figure 3. summarizes some of the
driving mechanisms behind, and components currently being explored to develop
nanobots that can be controlled in-vivo [41]. Some approaches seek to build entirely
new biomaterials, including biochips (small scale devices capable of performing
thousands of simultaneous biochemical reactions [42]), while others are harnessing
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Fig. 3 Overview of nanobot
driving sources and
components. Nanobots may
be externally, or chemically
driven and may be made of a
range of organic and/or
in-organic components

immune cells and micro-organisms such as bacteria and viruses [43, 44]. Nanobots
are being designed with a wide range of different organic (e.g., DNA, flagella)
and non-organic (e.g., CMOS nanosensors, nanowires) components with varying
biocompatibilities [44–47]. Some nanobots are powered externally by, for example,
magnetic fields [48], electricity [46], light [49] and acoustic waves [50], while others
are powered chemically [43] (Fig. 3). Computer scientists and biologists have teamed
up to make a new class of living robotics that challenge the boundary between
synthetic and biological [51–53]. As this technology develops it may be possible to
incorporate these into nanoswarms. As we do so, however, we must be attentive to
the challenges of nanobot toxicity, which will depend heavily on its specific design,
driving method and its application [54].

2.3 Nanoswarms

Collaborative behaviors among groups of individuals that enable self-organization
are present in social animals such as birds, ants, fish and termites [55]. New research
is now applying artificial swarm intelligence techniques to controlling and designing
nanoswarms [9, 56]. Figure 2 illustrates different nanoswarm behaviors including
collective behavior that emerges from interactions between the nanoparticles or
nanobots, and between the nanoparticles or nanobots and their environment. Swarm
engineering techniques used to design nanobots and their interactions aim to ensure
the resultant behaviors are fault tolerant, scalable and flexible. Designing coop-
erative behaviors requires defining the behavior that should be displayed by the
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nanoswarm within its environment of action [9]. The challenge is then to understand
which individual nanobot design could give rise to a desired collective behavior.
In silico tools have been shown to facilitate exploration of nanoswarm design to
select nanobots with the potential to deliver their cargo to tumour cells [6]. More-
over, person specific solutions could be engineered to develop targeted therapy,
leading to personalized medicine for an individual patient, or to produce sufficient
amounts of personalized patient data for machine learning [6]. In silico modelling
has now advanced to the point of being an effective tool that can minimize costly
trial-and-error design methods, and will be key in cancer modelling and nanoswarm
development [6, 57, 58].

One key challenge for developers is that once in silico modelling has run its
course, the next step must be first-in-human trials of nano-swarms, for which safety
protocols and governance structures are, at best, unclear and, at worst, entirely absent.
Although progress is being made to guide developers to focus on functionality and
toxicity [59–62], when these technologies are ready for clinical trials, guidelines on
trade-offs between nanotoxicity and benefit in terms of patient survival and quality
of life need to be in place [21, 59].

2.4 Personalization

Personalized medical care is based on the patient’s genetics and specific disease
profile. Personalized cancer medicine can have fewer side effects than other types of
treatments because it can target cancer cells without affecting healthy cells, however
personalized treatments are not available formany types of cancer and genetic testing
can be expensive [63, 64]. Nanoswarms appear to be a promising approach when
therapies require different activities to be performed concurrently, when high redun-
dancy and the lack of a single point of failure are desired, and when it is techni-
cally infeasible to set up the infrastructure required to control the nanoswarms in a
centralized way. Furthermore, researchers could incorporate living systems, maybe
even utilizing the patient’s own cells, to create personalized therapies. In the future,
nanoswarms could be used not just for drug delivery systems or tumour treatment,
but for tissue engineering and, eventually, to tailor an increasingly specific and potent
immune response, which can result in an effective, and personalized cancer treatment
(Fig. 4).

3 Challenges in the Clinical Pathway

Alongside their potential, nanomedicines face several challenges, such as ambiguous
characterization, possible toxicity issues, a lack of specific regulation, unclear cost–
benefit considerations, andwaning enthusiasm among some health care professionals
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Fig. 4 Future personalized
Swarm Medicine
prescription for Patient X’s
cancer which is treated by
injecting or swallowing
millions of tiny robots
[nanoswarms] that have been
created using a 3D bioprinter
encoded with the person’s
specific genome

[15].Given the sudden expansion of nanoparticles in the clinic and rapid development
of nanomedicines, it is crucial to examine these challenges.

3.1 Definitions

The International Standards Organization (ISO) have been working towards stan-
dardized definitions for the vocabulary of nanotechnology. Although various organi-
zations, including ISO, have proposed several frameworks for the categorization of
nanomaterials, a complete internationally agreed terminology is yet to be developed.
There are currently two basic classification systems for different types of nanoma-
terials, based on the structural dimensions of nano-objects and the chemical compo-
sition of nanoparticles (Fig. 5), and whilst these offer a useful way to differentiate
different aspects of the technology, they fall short of providing the comprehensive
vocabulary needed.

Different types of organic and inorganic nanoparticles are used in the healthcare
sector and could soon include smart health technologies such as nanobots (Fig. 3).
Translational aspects of nanobots are a challenge. One reason is that nanobot designs
(as discussed in Sect. “Future Nanomedicines”) lack a well-defined and comprehen-
sive design approach with a clear explanation of the requirements for their targeted
clinical applications [65, 66]. Design should consider the entire clinical scenario from
the point of entry to safe and functional operation within the immune system and to
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Fig. 5 Nanomaterials based on the ISO 80004 standards nanotechnologies vocabulary series
categorized by structure of nano-objects and chemical composition of nanoparticles

the disposal after completion [65, 67]. In addition, everything must be encoded in
the physical design of the nanobot simultaneously [65]. To fully understand the risk
posed by a specific nanorobotic application, consideration of its components, how
these function in the body, as well as any additional external protocols is required.
Currently the wide variety of nanorobotic approaches complicates assessment of the
safety of nanobots [41, 68, 69].

The problems arising from a lack of standardized vocabulary are multifaceted. As
there are different definitions, across different disciplines and different regulators,
the true number of nanomedicines either approved for marketing or under clinical
trials is difficult to establish, and this in itself is a cause for concern relating to three
main areas: (i) risk minimization—without standardized terminology it is harder to
locate and aggregate safety data, leading to many nanomedicines being approved on
a case-by-case basis, without sufficient assessment of existing data; (ii) regulation—
a field that lacks definition, and lacks standard vocabulary to describe its activities,
risks those activities falling through the regulatory net, with some activity captured by
existing policies and guideline, and others not, depending on how they are described.
(iii) communication—this is key for transparency about ethics, approaches and risks,
but is impeded when terminology is inconsistent. Lack of definition can lead to
miscommunication, which can in turn lead to mistrust amongst stakeholders [70].
From computation to clinic, a number of safety-related regulatory aspects need to
be taken under consideration for current and future nanomedicines including size,
toxicity and evaluation as a drug or device [21, 65, 71–73].
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3.2 Size

One of the most challenging aspects of the lack of a standard vocabulary is that
there is not even an agreed definition of what ‘nano’ means such that in different
systems and jurisdictions the technology covered by any specific regulatory systems
will likely differ. For example, the US National Nanotechnology Initiative (NNI),
considers a structure to be ‘nano’ if it has dimension of 1–100 nm, whereas the U.K.
Royal Society and Royal Academy of Engineering considered as ‘nano’ anything in
the range of 0.2–100 nm. Conversely, the Friends of the Earth Australia recommend
defining nanoparticles as anything up to 300 nm in size, whereas it is common in
the biological sciences to work with ‘nanoparticles’ up to 400 nm diameter (as drug
carriers), with others considering anything <1000 or <500 nm to be ‘nano’ [72–75].

The shape and size of nanoparticles is important because increased size can lead to
changes in physical, pharmacokinetic and pharmacodynamic properties [76, 77], and
biosafety, all of which can affect the impact on the environment and biosystem into
which the technology is introduced. Further, different properties of nanoparticles,
including size, shape, surface area and charge play a key role in toxicity assessment
[59]. There will always be a trade-off for researchers in terms of performance and
toxicity when selecting nanoswarms for clinical use, but for these trade-offs to be
effectively regulated it is necessary for regulation to effectively capture all relevant
activity. Effective oversight will be difficult if it is possible to avoid scrutiny simply
by working with a particle size that a specific jurisdiction does not consider ‘nano’.

3.3 Toxicity

Nanoparticles from natural sources have been used in cosmetics (including
sunscreens) for some time, some dating back to over 2000 years ago when ancient
Roman and Greek societies used sulfide nano crystals to dye their hair. However,
toxicity concerns about nano-sunscreens were first raised in 2008, when a BlueScope
Steel report stated that metal oxide nanoparticles in some sunscreens could bleach
painted surfaces of coated steel [72] as several sunscreens tested contained nanoparti-
cles that acted as extremephotocatalysts [78–80]. This indicated peoplewith sensitive
or damaged skin could be at increased risk of skin penetration by these nanopar-
ticles [78, 81]. Due to public perception that nanoparticles in general had toxic
effects, several companies dropped the use of the word “nano” or “nanotechnology”
from marketed products that contained nanoparticles and there is still an ongoing
policy debate around labeling of nano-enabled consumer products [82–85]. Whilst
it goes without saying that toxicity profiles of any nanotechnology will need to be
ascertained, and safety established, as the use of nanoparticle-derived applications
increases, there will be increasing need for companies to communicate with the
public to alleviate their concerns. This could be crucial for cancer treatments, where
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the benefit of introducing nanomedicine is to reduce the toxic side-effects of current
treatments [86, 87].

How nanoparticles behave inside the human body is one of the central issues that
need to be considered [21, 59, 60, 62]. For example, in theory they could cause “over-
load” on phagocytes (cells that ingest and destroy foreign matter), thereby triggering
stress reactions that lead to inflammation and weaken the body’s defense against
other pathogens. Another important issue to consider is the longer-term potential
toxic effects of non- or slowly-degradable nanoparticles accumulating in organs
over time, which will make continuous monitoring and long-term follow-up after
first-in-human trials essential.

3.4 Device or Drug

Nanomedicine poses an additional challenge for researchers, industry, and regulators
insofar as it is unclear if it should be classified as a medicinal product or a medical or
surgical device. The category it fits into determines the regulatory pathway that must
be followed for first-in-human trials, and later clinical practice. Inmany jurisdictions,
medicinal/pharmacological interventions aremore regulated thanmedical or surgical
devices [21, 88, 89], with the latter sometimes able to be introduced with minimal
oversight and little evidence base.

When the FDA first approved DOXIL® they considered making a new cate-
gory “nano”, but decided to market it as a device so that they could expediate the
approval process [90]. This raises several questions around how future nanomedicine
technology will be approved, and whether regulators will pay sufficient attention
to the differences between them and thus differentiate between those that, for
example, might merely function as a drug delivery system and those that might
be capable of physically manipulating their environment. The former seems more
like medicines, and the latter more like surgical instruments, although neither fit
neatly into either category. Beyond current nanomedicines, there is a need to clas-
sify future nanomedicines. The physical design, composition, medical functions and
control methods of a nanobot are application-oriented, so each nanobot should be
decided separately for evaluation as a drug or a device [65].

As it stands, many nanoparticle systems have been approved by either the FDA
or EMA, and are used in the clinic to either treat or diagnose disease [91]. Most
nanoparticles in the clinic fall under the category of Non-Biological Complex Drugs
(NBCDs). There are ongoing worldwide discussions on whether current regulatory
frameworks for NBCDs are fit for purpose, and there are calls for global harmoniza-
tion of scientific and technical requirements for NBCDs that benefit stakeholders
[92–94].
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4 Ethical and Regulatory Aspects of Nanoswarms

4.1 Ethics

All of the issues discussed above have an ethical component, insofar as our response
to the questions they raise will be determined by the extent to which we place value
over certain outcomes over others, what risks we are willing to take for what benefits,
the extent to which we are prepared to expose vulnerable patients to risk, and the
extent to which we believe patients should be allowed to make their own choices.
Nanomedicine, including nanoswarms, does not to our mind generate entirely new
categories of ethical issue, but it does require us to think carefully about howwe apply
our current thinking about these kinds of issues to this new frontier of medicine, and
consider whether our current theories and approaches can provide the guidance we
need. This is not the place to outline and respond to every ethical issue raised. We
will, however, make the general observation that, as technology develops it will
often challenge our current ethical thinking, and this presents an opportunity, if not a
requirement, to re-think our ethical commitments, and possibly either shift our ethical
understanding to accommodate the new technology, or to reject it [95]. Nanoswarms
in healthcare do present that kind of challenge, as we discuss below.

Nanoswarms have the potential to re-shape our conceptions of what it is to be
human. It is unclear whether an advanced technology such as nanoswarm would be
a treatment or an enhancement creating ‘everyday cyborgs’ [96] that appear entirely
human but havewithin them an almost symbiotic and autonomous robotic technology
thatmaintains their health. Thevery idea of humanenhancement is itself controversial
[97], and whether a particular technology is considered an enhancement or treatment
will likely have significant bearing on its perceived ethical acceptability. Such tech-
nologies could take us into a new frontier of risk, with the concurrent challenge of
ensuring that patients and research participants sufficiently understand what they are
agreeing to put into their bodies, and what risk that poses. This is compounded by the
fact that the patients most likely to be in position to trial these treatments are those
who are perhaps the most desperate and most vulnerable, in terms of their desire for
a specific health outcome.

Whilst this does not rule out conducting human tests, it should give us pause, and
highlights the clear obligation on developers to be rigorous and conscientious in their
pre-trial safety assessments. Regulations are in-part motivated because we cannot
always rely on the rigor and conscientiousness of developers. However, because this
technology may blur the lines between our current understanding of pharmacolog-
ical and surgical interventions, it could present a significant challenge to current
regulatory systems, and these will need to adjust accordingly. There are other ethical
concerns which we should be attentive to, especially with respect to nanomedicine’s
role in the wider international community. Concerns have been raised over the poten-
tial for nanomedicines to intensify the gap between rich and poor countries, leading to
a so-called ‘nano-divide’ [98]. However, this kind of divide is also foreseeable within
individual countries, where new demographics form based on a person’s access to
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technology. This is not a unique problem to nanomedicine but could exacerbate
existing health inequalities if some people were to have access to a technology that
identifies and manages health risks in real time and others do not.

Additional concerns arise around the volumeof data thatmight need to be recorded
and processed in real time for some nanomedicines to function, especially those that
are personalized, and the massive health information infrastructure that would be
required. For example, there are concerns regarding the security of those data and
the possible ways it might be used and abused. Potential military developments raise
further concerns. It seems clear that any nanoswarm technology could in principle
be deployed to harm, as well as heal. This ‘dual use’ problem is not unique to this
technology, but the potential for this technology to be developed into an invisible and
personalized weapon might be as particularly frightening to the public as it might
be enticing to those who use, and profit from, arms. The dual use problem cannot be
managed by health regulators [98, 99], and so additional legal mechanisms might be
required to allay these particular fears.

It is worth noting that all these dystopian concerns do not challenge the substantive
ethical status of any nanomedicine technology, but rather concern the way it might be
used and the deleterious consequences that could follow. These are things it should
be possible to manage, and guard against—so long as we have the foresight, and
motivation, to do so. Another general ethical concern is that the potential benefits of
this technology risk being hindered by an overly restrictive regulatory system. We
would certainly not align ourselves with those who call for ethics to ‘get out of the
way’ of research [100], but we are alert to the potential for well-meaning regulation
and systems of ethical governance to mire researchers in unnecessary bureaucracy
that slows, if not entirely stifles, progress. There is, of course, a middle ground to be
sought.

4.2 Towards a Regulatory Framework

For all their potential medical applications, nanoswarms are still largely in the
research and development stage. Clinical trials of nanoswarms in humans have yet
to be approved [101], but we ought to start thinking about what the first-in-human
clinical trials of nanoswarms could or should look like, and ask how we will regulate
the development of this new medical technology. There is significant potential for
nanoswarms in medicine, not just for personalized cancer treatment, but many other
areas. As and when this technology becomes ready for first-in-human tests, decisions
will have to made about how these technologies can and should be safely tested.

As noted above, a harmonized standard nanomedicine vocabulary will be essen-
tial, and this is a pre-requisite for an effective regulatory framework. We leave the
question of what that framework ought to look like open for now.We intend to return
to it, but believe that further research is needed in order to provide evidence, and
undertake the necessary consultation needed to begin to draft a framework—this



282 M. Swana et al.

Fig. 6 Key areas that need
to be explored to start
creating a framework for
past, present and future
nanomedicines.

work is underway. We suggest, for now, that there are 6 central domains that need to
be explored in order to draft guidance for regulation in this area (Fig. 6).

Here, we add our voice to those of others [4, 102–108], to amplify the critical call
for policymakers, researchers, developers, ethicists, patient representatives, health-
care professionals, and the pharmaceutical sector, to cooperate to contribute to the
creation of a resilient and sustainable global regulatory landscape, which protects
safe and responsible innovation for the benefit of everyone.
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Study of Tumour Induced Vessel
Displacement in the Tumour Progression
Rate with Advanced Bioinspired
Computational Tools

Ioannis Karafyllidis, Georgios Ch. Sirakoulis, and Raphael Sandaltzopoulos

Abstract In this chapter, a high level, namely tumour level, model and a correspond-
ing simulation algorithm are introduced for the study of the effect of tumour-induced
vessel displacement, on tumour progression rate prior to the onset of angiogenesis.
The proposed model attributes its successful characteristics to a well known parallel
bio-inspired computational tool, i.e. Cellular Automata (CAs) and solves diffusion
differential equations to compute oxygen and glucose distribution into the tumour
mass. CAs have been proven as efficient alternative to differential equations computa-
tional models that, despite their simplicity, exhibit complex dynamical behavior and
can describe successfully the underlying phenomena for various physical, chemical
and biological systems. More specifically, the studied phenomenon arrives from the
displacement of the existing vessels, caused by mechanical forces owing to tumour
growth, that heavily affect the aforementioned distribution of glucose and oxygen
and, consequently and in turn, affect the tumour growth itself. The growth of a large
number of tumours that initiated at various distances from a vessel, for the same
number of time steps has been successfully modeled enabling us to further inves-
tigate and understand the underlying dynamics of early tumour growth. Simulation
results showed that the properties of the physical diffusion processes in the case of
moving vessel-tumour boundaries, affect directly tumour progression in the avascu-
lar progression phase. As such, the proposed model can be further utilized to explore
various hypotheses of tumour growth relevant to drug delivery in chemotherapy, as
well as to study access of growth factors and other plasma factors to the tumour.
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1 Introduction

Cancer is not a single disease, but rather a highly complex and heterogeneous set of
diseases that can adapt in an opportunistic manner, even under a variety of stresses
[39]. In particular, cancer describes a group of genetic and epigenetic diseases, char-
acterized by uncontrolled growth of cells, leading to a variety of pathological con-
sequences and frequently death [36]. During the last decades, a great number of
researchers have focused on modeling of cancer and tumour growth as a multifacto-
rial process. Hence, over the last decades the development of numerous models that
attempt to simulate the mechanisms controlling solid tumours morphogenesis [77].
Data and observations of tumour growth, evolution and adaptability has attracted
the attention of theoreticians from many different fields, becoming one of the most
important areas of active research in the theoretical biology community. Such data
and observations strongly indicate that tumours do not behave randomly, but rather
constitute self-organized versatile systems able to collect information from their
surroundings, alter and exploit their microenvironment and evolve in an organized
manner [10, 33, 34]. As already stated, tumour growth is a complex phenomenon that
integrates genetic, biochemical, chemical andmechanical processes.Although recent
progress has been made in understanding certain aspects of the complex tumour-host
interactions thatmay be responsible for invasive cancer behaviors,manymechanisms
are either not fully understood or remain completely elusive at the moment. Towards
this direction, several aspects of tumour growth and tumour induced angiogenesis
have been extensively studied and modeled [4, 8, 9, 23, 25, 28, 63, 75, 77, 86]. In
this chapter, we focus mainly on the modeling of avascular tumour growth.

The number of models analysing the different stages in tumour development,
from its initial avascular phase to invasion and metastasis through vascularization
via tumour-induced angiogenesis, is huge [5]. Models for tumour growth can be
continuous, discrete or hybrid. Continuous models are based on the use of partial
differential equations or stochastic methods and treat the tumour as a (homogeneous
or inhomogeneous) continuum surrounded by advancing boundaries. These models
actually calculate the velocity and direction of the various tumour boundary points
under conditions imposed by the flow of oxygen, nutrients and drugs [18, 28, 45,
86]. In discrete models, the area occupied by the tumour and its environment is
divided into small equal areas, thus forming a discrete lattice, and the growth pro-
cess follows local rules [20, 53, 59, 66]. In this case, tumour growth emerges as
a result of the collective behavior of the processes that take place in each of these
areas. Discrete models of tumour growth can easily be decomposed in biochemical
pathways and provide a useful bridge between the macroscopic tumour behavior
and the molecular processes that drive it [48]. Hybrid models combine the discrete
models with the solution of partial differential equations on the discrete lattice of
these models. Cellular Automata (CAs) models have been widely acknowledged
as an appropriate alternative to partial differential equations [12, 15, 17, 19, 57,
76]. The main advantage of utilizing CA in cancer modeling is their inherent ability
to formalize experimentally observable single-cell kinetics and observe emerging
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population level dynamics without a-priori knowledge of tumour behavior [60].
Because of their apparent resemblance of in vitro cell culture models, CA may be
referred to as in silico experiments [60].

Tumour growth and development comprises three general phases: first, the tumour
should escape from the immune system surveillance. Then, it needs to reduce the
extracellular matrix. Finally, after sufficient growing, it should assist blood vessels to
survive in its tissue [50]. Avascular growth phase is the common phase between both
benign and malignant tumours and can be better experimentally simulated using in
vitro platforms. In this phase, the growth rate is limited to diffusion and consumption
of the nutrients. Studies in avascular tumour growth by means of diffusion have been
extensively conducted over the past decades, and many models have been presented
[75]. Nevertheless, a shortcoming of most of the aforementioned tumour growth
models is that they do not consider the displacement of the surrounding tissue caused
by tumour growth as a basicmodel parameter [43]. Evenprior to the neo-angiogenesis
phase, tumour growth exerts mechanical forces that push any vessels in its vicinity
away from the tumour volume, thus inhibiting oxygen and nutrients to reach all
tumour cells [49]. This effect enhances hypoxia and possible necrosis in tumour
areas. Hence, there is a cycle of events: Tumour growth and the concomitant tissue
displacement cause displacement of nearby blood vessels; displacement of vessels
alters the distribution of O2 and nutrients, which in turn affects tumour growth,
which affects vessel distances from the tumour and so on. Later on, tumour induced
angiogenesis enters this cycle by the production of vascular growth factors such
as vascular endothelial growth factor from tumour cells [85] rendering the tumour
growth process more complex. It is therefore essential to develop an accurate model
of early tumour growth which can serve as a basis and can be extended to incorporate
new processes such as angiogenesis and the dynamics of metastasis.

In this chapter, we present our efforts towards the development of a high level,
i.e. tumour level, model and a simulation algorithm based on it, for the study of
the effect of tumour growth and tumour-induced vessel displacement. Although our
simulated environment is still a highly idealized version of the situation in vivo, we
have used this algorithm to simulate the growth of a number of tumours that initiated
at various distances from a vessel, for the same number of time steps. Note here
that similarly to any mathematical model of a physical system, simplifications and
multiple levels of abstractions are incorporated in the proposed model. However,
simulation results showed that the properties of the physical diffusion processes in
the case of moving vessel-tumour boundaries, affect directly tumour progression in
the avascular progression phase.

In Sect. 2, the necessary background of Cellular Automata (CAs) are presented.
In Sect. 3, the model of tumour growth and tumour-induced vessel displacement is
proposed. Finally, in Sect. 4 the simulation results of the tumour growth and tissue
developments are introduced, while in Sect. 5, conclusions are finally drawn.
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2 Cellular Automata and Modeling Aspects

Several systems in physics, biology, chemistry, finance, as well as social sciences are
characterized by emerging features that are not easy to guess from the elementary
interactions of their microscopic individual components. In the past, such macro-
scopic behavior of the aforementioned systems was modeled by assuming that the
collective dynamics of microscopic components can be effectively described collec-
tively by equations acting on spatially continuous density distributions. It turns out
that, to the contrary, taking into account the actual individual/discrete character of
the microscopic components of these systems is crucial for explaining their macro-
scopic behavior [66]. Towards this direction and for the enhancement of modeling of
such systems, the application of appropriate bio-inspired inherently parallel compu-
tational models like Cellular Automata (CAs) that can capture the essential features
of systems in which global behavior emerges from the collective effect of simple
components, which interact locally [69]. During the last decades, CAs have been
extensively used for mimicking several natural processes and systems to find fine
solutions inmany complex hard to solve computer science and engineering problems.

A CA is a computational model originally proposed by John von Neumann and
Stanislav Ulam in the 1940s [83]. Despite that, the interest around themmostly grew
in the 1970s, when the Scientific American published a 2-D CA called Game of
Life by the British mathematician, John Conway [29] and they were more widely
studied in the next decades by S. Wolfram [89]. Their popularity is due to the fact
that they allow the emergence of complex phenomena employing simple structures
and resulting to inherent emergent computation and self-organization [2, 88].

A CA configuration can be defined using specific attributes, like a finite size N
dimensional grid of CA cells [2]. In other words, a CA consists of N ∈ N dynamical
modules, namely the cells, in regular spatial formation that are locally interconnected.
The whole configuration constitutes a discrete dynamical system, whose temporal
evolution is governed by the inter-cell interactions and the inter-cell dynamics. For
every CA cell, the CA’s neighborhood is described as a set of attached cells connected
to theCAcell, affecting its timeevolution. In particular, each individual cellCi

∣
∣
i∈[1,N ],

is defined by a state si from a predefined set S of states that is evolving in discrete
time intervals according to the transition rule f , which takes into account the cell’s
and its neighbors’ current states and as such it depends on the states s j

∣
∣
j∈[1,N ], of the

neighboring cells Nbi , i.e. the cells that are interconnected with Ci .
In particular, Elementary Cellular Automata (ECAs) describe an 1-D CA with

binary state cells, si ∈ {0, 1}, and each cell is interconnected only with the two
adjacent cells, Nbi = j

∣
∣|i− j |≤1, thus the transition rule is:

s ′
i = f (si−1, si , si+1) (1)

where si−1, si , and si+1 are the current states of cellsCi−1,Ci , andCi+1, respectively,
and s ′

i is Ci ’s next state.
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In more detail, the transition rule maps all the current state combinations LCR =
{si−1, si , si+1} to the next state s ′

i , i.e. f : {0, 1}3 −→ {0, 1}, thus the transition rule
is defined as the truth table for the 8 (23) possible input combinations LCR (Left,
Central and Right cell). According to Wolfram’s notation [87], the transition rule f
can be effectively coded to numbers from 0 to 255 (22

3 − 1), in relation to the rule’s
outcome set. For example, the ECA transition rule fk , where k = 4510 equals to
k = 001011012, which is presented for the better comprehension of the rule notation
and while the Big-endian format is considered for the binary number representation,
i.e. the most significant bit is in the leftmost position.

Furthermore, the current state of all CA cells SB = {s1, s2, ..., sN } can be also
coded to a binary number representation, named as the global state [55]. In specific,
the global state is a N -bit binary number where each bit is the current state of a
single CA cell, thus, in decimal representation, the global state is coded to a single
decimal number in the range [0, 2N ). If, for example, N = 4 and the current CA cells’
states are SB = {s1, s2, s3, s4} = {1, 0, 0, 1} then the global state in decimal form is
SD = 9. In addition, a global transition rule Fk can be described by a 2N × 2N matrix
such as:

Fk(i, j) =
{

1, SD = ( j + 1) & S′
D = (i + 1)

0, elsewhere
(2)

where, the transition SD −→ S′
D is the result of the local transition rule f on the whole

CA cell grid.
In the case of two-dimensional (2 − D) CA, the most well known neighborhoods

are (i) the von Neumann neighborhood, where the state transition rule F can be
defined as follows, practically introducing the involvement of the cell states of the
most nearest adjacent neighbors:

Sτ+1
C = F

(

Sτ
C , Sτ

N , Sτ
E , Sτ

S , S
τ
W

)

, (3)

while in case (ii) of the Moore neighborhood, beyond the aforementioned adjacent
cells, the state transition rule successfully involves also the states of the diagonal
neighboring cells as presented in the following Eq.4:

Sτ+1
C = F

(

Sτ
C , Sτ

N , Sτ
E , Sτ

S , S
τ
W , Sτ

NE , Sτ
NW , Sτ

SE , Sτ
SW

)

. (4)

Regarding the boundary cells (i = {1, N }) that are missing one adjacent neighbor,
there are various ways to handle their neighborhood. Onemay consider the boundary
cells as non-dynamical or mirror the existing neighboring cell to the missing one.
However, the most commonly used when compared to adiabatic, reflective and fixed
boundaries are the periodic/cyclic ones, where the other boundary cell is used as the
missing neighbor. Nevertheless, the selection of the boundary conditions depends on
the specific system under examination as well as the neighborhood connections in
every specific application.
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Having an identical rule throughout the lattice and simultaneously applying it,
leads to synchronous dynamics.However, one can introduce spatial or, even, temporal
inhomogeneities [16, 70, 84]. Modeling physical systems with CA is in harmony
with the contemporary notion of unified space-time and can lead to the state-of-the-
art concept of in-memory computing [6]. The CA cell state is representative of the
memory, while the CA local rule is appropriate of a processing unit. Moreover, CA
have been widely acknowledged as an alternative to partial differential equations
[57, 76]. More specifically, there are limitations related with the approximation of
differential equations in serial computers. Partial differential equations contain much
more information than is usually needed, because variables may take an infinite
number of values in a continuous space. Moreover, the value of a physical quantity
cannot be measured at a point, but instead it is measured over a finite volume [76].
Thus, to alleviate these limitations, several well-known partial differential equations
have been successfully solved onCA lattices, namely theDiffusion equation [17], the
Laplace equation [19], the Poisson equation [15], and the Weyl, Dirac, and Maxwell
equations [12], just to namea few. It has been also proven thatCAcan triviallymanage
complex initializations, boundary geometries, anisotropies and inhomogeneities [38,
69]. The CA approach is consistent with the modern notion of unified space-time.
In computer science, space corresponds to memory and time to processing unit. In
CAs, memory (CA cell state) and processing unit (CA local rule) are inseparably
related to a CA cell . Models based on CAmethodology have several advantages, like
inherent parallel nature that can be taken advantagewhen implemented on specialized
hardware [21, 44, 46, 56, 67, 74, 78, 81]. The applicability and robustness of CAs
in real world problems have been proven numerous times in the past [26, 82]. For
instance spanning from the prediction of the epidemic fronts spreading [72] and the
modeling of the underlying mechanisms of phenomena arising from combining light
and chemical oscillations and their macroscopic behaviour successfully simulated
by the Oregonator equations [3, 80] up to non probabilistic enhanced stereo vision
simultaneous localization and mapping [54]. Also, the implementation of CAs was
studied in the projection and simulation of the dynamic crowdmovement [30, 40] also
coupled with robotic guidance [14], the study of modern urban transport networks
[1] and those of the past [24]. The motivation behind using CAs is based on the fact
that they are proven to be efficient tools for fast prototyping and in-depth analysis of
waves dynamics in chemical systems [35, 51, 79]. The CAmodels allow for studying
a curvature and dispersion of wave patterns [31], dynamics of waves in anisotropic
medium [64], turbulence [35].

Regarding biological and chemical systems, CAs models have been widely used
in the past decades owing to almost all of the aforementioned reasons and their
prominent and inherent characteristics, not to mention the intrinsic similarity to
them as bio-inspired computational tools [22, 52, 68, 71]. More specifically, and
concerning the modeling of cancer with the help of CAs, several attempts to model
tumour growth [5, 20, 32, 36, 37, 41, 58, 59, 65], tumour cell invasion [39, 58], and
tumour interactions with various environmental factors [50, 61] have been reported
to literature so far. A previous extensive review of the main methodologies for CA
models describing tumour growth has been delivered by [13], emphasizing mainly to



Study of Tumour Induced Vessel Displacement in the Tumour … 295

the fact that by utilizing CAs, researchers have managed to consider a microscopic
scale to describe the macroscopic characteristics of tumour morphology as well as in
[61] where a comparison of relative strengths and weaknesses of various cell based
models also referring to the CA-based ones is provided.

3 Cellular Automata Model of Tumour Growth
and Tumour-Induced Vessel Displacement

Normal cells proliferate much slower than tumour cells and the volume of the normal
tissue ismaintained almost constant because of the balance between cell proliferation
and cell death. In our tumour growth model we assume that normal cell proliferation
around the tumour has no significant effect on tumour growth. The tumour and the
tissue around the tumour are modeled as a two-dimensional cellular automaton (CA)
lattice. We set each lattice site to correspond to a square with side length equal to
10μm, similar to the size of a typical cell. Obviously, if required, lattice dimensions
may be adjusted according to our preferences without affecting the mechanics of the
algorithm. The state, TC , of each lattice site rectangle, say the (i, j) site, at a time t ,
is the probability that the cell covered by this lattice site rectangle is a tumour cell.
The state of a lattice site covering a normal cell is 0 and the state of a lattice site
covering a tumour cell is 1. All the lattice sites located at the border between normal
and tumour cells have states between 0 and 1.

We follow up with the assumption that during tumour growth the state of a lattice
site that is adjacent to the tumour is initially at state 0 and as the tumour grows the
state also grows till the state 1 is reached. As a consequence, the tumour growth
phenomenon is modeled by the corresponding growth of the states of the CA lattice
sites. It must be noticed that the state of a lattice site grows at discrete time steps,
allowing for the modeller to adopt any time evolution requested [42, 72, 73]. The
state at time step t + 1, TCt+1

i, j is directly dependent of all the neighboring sites at
time step t , and is calculated according to the following equation:

TCt+1
i, j =

(

α × oti, j + β × gti, j

)

× TCt
i, j +

(

α × oti−1, j + β × gti−1, j

)

× TCt
i−1, j+

(

α × oti, j−1 + β × gti, j−1

)

× TCt
i, j−1 +

(

α × oti+1, j + β × gti+1, j

)

× TCt
i+1, j+

(

α × oti, j+1 + β × gti, j+1

)

× TCt
i, j+1 + 0.18 ×

[ (

α × oti−1, j−1 + β × gti−1, j−1

)

× TCt
i−1, j−1+

(

α × oti+1, j−1 + β × gti+1, j−1

)

× TCt
i+1, j−1 +

(

α × oti−1, j+1 + β × gti−1, j+1

)

× TCt
i−1, j+1+

(

α × oti+1, j+1 + β × gti+1, j+1

)

× TCt
i+1, j+1

]

(5)

where oti, j is considered to be the normalized oxygen concentration and gti, j is con-
sidered to be the normalized nutrient (for example glucose) concentration at time
step t at lattice site (i, j). As described later on in this section, these concentra-
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Fig. 1 Schematic
representation of vessel
displacement due to tumour
growth. Solid lines represent
tumour and vessel borders at
present time and dashed lines
the borders at a previous time

tions are computed at each time step by solving the diffusion equations for oxygen
and glucose on the CA lattice, with boundary conditions that are different for each
time step because of the displacement of blood vessels caused by tumour growth.
The parameters α and β are user defined calibration parameters, which determine
the effect of oxygen and glucose concentration on tumour growth. Indeed, there are
experimental ways to define these parameters, but this is not the purpose of our work.

During tumour growth, mechanical forces develop and cause mechanical dis-
placement of the surrounding tissue and blood vessels [11]. In areas relatively away
from blood vessels, the concentration of oxygen and nutrients drops almost exponen-
tially with distance. Therefore, the effect of even a minor displacement, which drives
vessels away from the tumour, may not be trivial. To model vessel displacement
due to tumour growth, we assume that the tissue between the tumour and the vessel
is homogeneous and isotropic. We further assume that during the initial phase of
tumour growth the forces are not strong enough to cause tissue cell damage, i.e. they
do not exceed the elastic limit of the cells, hence the Hooke’s law can be applied [47].
Figure1 depicts vessel displacement caused by tumour growth. Solid lines represent
the tumour and vessel borders at present and dashed lines the borders at a previous
time point. At the tumour’s surface, the forces caused by tumour growth are within
normal limits.

In Fig. 1 the force caused by the displacement AB, acts in the direction of the line
AD and causes a vessel displacement CD. According to Hooke’s law [47]:

F = keq × x (6)

where F is the force, keq is the equivalent elastic constant of tumour and surrounding
tissue and x is the total displacement. This displacement comprises the line segments
AB and CD. Assuming that the tumour and tissue have different elastic constants, kc
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and kt respectively, the equivalent constant is given by the following equation:

1

keq
= 1

kc
+ 1

kt
(7)

and the displacement ratio by:

AB

CD
= kt

kc
(8)

Since different solid tumours and tissues are expected to have diverse elastic
constants, these constants are user- defined parameters in the simulation algorithm
which will be described later on.

The results of vessel displacement simulation are shown on Fig. 2. Initially, as
shown in Fig. 2a, the tumour is relatively small and the forces are not large enough to
displace the nearby vessel, but as the tumour grows the vessel is displaced (Fig. 2b).

Equation (5) relates tumour growth rate with the normalized concentrations of
oxygen and glucose, o and g. Oxygen and glucose diffuse from the vessels and are
distributed in the surrounding tissue. Normal tissue and tumour cells uptake oxygen
and glucose and act as sinks in the diffusion process. In our model, we choose to use
normalized concentrations by setting the values of oxygen andglucose concentrations
at lattice sites that are adjacent to vessels equal to 1. These concentrations are two-
dimensional functions that are solutions of the diffusion equations:

∂o(x, y, t)

∂t
= Dox ×

(
∂2o(x, y, t)

∂x2
+ ∂2o(x, y, t)

∂ y2

)

−Uox (x, y) × o(x, y, t)

(9)
and

∂g(x, y, t)

∂t
= Dgl ×

(
∂2 g(x, y, t)

∂x2
+ ∂2 g(x, y, t)

∂ y2

)

−Udg(x, y) × g(x, y, t)

(10)
Equation (9) describes the diffusion of oxygen, where Dox is the diffusivity (or

diffusion coefficient) of oxygen and Uox is the oxygen uptake rate with units (1/s).
Equation (10) describes the diffusion of glucose. Dgl is the diffusivity of glucose and
Ugl is the glucose uptake rate with units (1/s).

We discretize equations (9) and (10) on the CA lattice and calculate the values of
oxygen and glucose normalized concentrations at points that are located at the center
of the squares that correspond to lattice sites [7]. Both o and g are functions of x, y
and t and their discrete counterparts used in Eq. (5) are:

o(x, y, t) → oti, j andg(x, y, t) → gti, j (11)
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Fig. 2 a Vessel location and
shape at the onset of the
tumour growth b Vessel
displacement because of the
tumour growth

(a)

(b)

Figures3 and 4 show the distribution of oxygen and glucose, respectively, for the
vessel-tumour relative positions depicted in Fig. 2b. The boundary conditions were
imposed by setting the values of both normalized concentrations equal to 1 in lattice
sites that are adjacent to vessels and equal to 0 in lattice sites that are located more
than 200μm away from the vessel.
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Fig. 3 Distribution of
oxygen for the vessel-tumour
relative positions depicted in
Fig. 2b

The diffusivity values are taken to be Dox = 10−5cm2/s and Dgl = 10−7cm2/s
[27]. The uptake rate for oxygen isUox = 10−1s−1 and the uptake rates of glucose for
normal and tumour areas areUgl = 10−4s−1 andUgl = 10−3s−1, respectively [85]. In
normal tissue lattice sites, where the state TC = 0, the uptake rate isUgl = 10−4s−1

and in tumour lattice sites where the state TC = 1, the uptake rate isUgl = 10−3s−1.
In lattice sites that contain both normal and tumour cells the uptake rate is a linear
function of the site state TC . As shown in Fig. 4, this results in increasing glucose
consumption as we move from normal tissue into the tumour area.

4 Simulation Results of Tumour Growth and Tissue
Displacement

Based on the model described in the previous section we developed an algorithm for
the simulation of the effect of tissue displacement and tumour growth on tumour pro-
gression. The flowchart of this algorithm is shown in Fig. 5. The user can either draw
a hypothetical vessel (or vessels) or import a digitized image of a tissue, in which she
wishes tostudythedynamicsofavascular tumourgrowth.Then, theuserselectsasmall
tissue area (as small as a pixel in the case of an imported image) where the tumour is
initiated. If there is already a tumour in the imported image, the user determines the
tumour area as the tumour initiation area. Vessel shape and location and tumour initi-
ation area are the inputs to the algorithm. These inputs also determine the initial and
boundary conditions for the tumour growth simulation during the first time step.

After input introduction the algorithm takes the first time step (t = 1). Diffusion
equations (9) and (10) are discretized and solved on the CA lattice. Thus the distribu-
tion of the normalized oxygen and glucose concentrations, o and g, and their values
in all lattice sites are determined. These values are used to compute tumour growth
using Eq. (5). Tumour growth causes vessel displacement. This displacement is com-
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Fig. 4 a Distribution of
glucose, originally and b for
the vessel-tumour relative
positions depicted in Fig. 2b

(a)

(b)

puted and the new vessel location and shape are obtained. The new vessel location
and shape and the new size of the tumour determine the new boundary conditions
for the two diffusion equations (9) and (10). The next time step is taken and the
diffusion equations are solved with the new boundary conditions determined in the
previous time step. The tumour growth, and the new vessel displacement and shape
are computed. These will be the new boundary conditions that will be imposed in the
next time step and so on until the user determined maximum number of time steps,
Tmax , is reached. Tmax is the timewhen the avascular phase is supposed to end and the
neo-angiogenesis phase begin. Tumour growth causes vessel displacement, which
changes the distributions of oxygen and glucose, which in turn affect tumour growth,
which causes vessel displacement and this process goes on until neo-angiogenesis is
triggered.
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Fig. 5 Flowchart of the
modeling algorithm
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Fig. 6 Normalized tumour
sizes as a function of the
distance of the tumour
initiation lattice site from the
vessel. Line (1) corresponds
to α = 0.01, β = 0.05, line
(2) to α = 0.005, β = 0.03
and line (3) to α = 0.001,
β = 0.002

We used this algorithm to simulate the growth of a number of tumours that are
initiated at various distances from a vessel, for the same number of time steps. We
did this for three different pairs of values of the user defined parameters α and β

of Eq. (5). The results are shown in Fig. 6. Line (1) corresponds to α = 0.01 and
β = 0.05. The first tumour initiation lattice site is located 10μm from the vessel. In
our series of digital experiments, this tumour reached the maximum area (maximum
size), T Amax , in the given time steps. If the size reached by another tumour, say
tumour j , located further from the vessel in the same number of time steps is T A j ,
the normalized size of this tumour, NSj , is:

NSj = T A j

T Amax
(12)

The normalized size of the tumour that reached the maximum size is 1. Line
(2) corresponds to α = 0.005 and β = 0.03. Line (3) corresponds to α = 0.001 and
β = 0.002. In each case the growth of fifteen tumours was simulated. The first one
is located at a distance of 10μm from the vessel and the rest fourteen are located at
10μm intervals at distances ranging from 20μm up to 150μm from the vessel. In
all three cases, tumour normalized sizes are large at distances from 10μm to 40μm
from the vessel. The sizes are reduced significantly at distances from 40 to 70μm
from the vessel and are further slightly reduced at distances from 70μm to 150μm
from the vessel.

We attribute these digital experimental results to the nature of the diffusion pro-
cess.Concentrations of oxygen andglucose are relative high near the vessel, then drop
almost exponentially and finally reach a nearly constant minimum value. Our sim-
ulation results strongly suggest that the properties of the physical diffusion process
in the case of moving vessel-tumour boundaries, affect directly tumour progression
during the avascular phase. The values of parametersα andβ may vary greatly among
different tissues. Therefore, it was not necessary to define the exact parameter values
in order to support our main conclusion. Our simulation analysis showed that given
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any set of parameter values, the vessel displacement affected tumour growth. We
should like to stress that it is the displacement, not the nature of these parameters
that is evaluated by our approach. Therefore, we chose to make our model as general
as possible and offer the option to define these parameters according to the properties
of the tissue under study.

Based on our analysis, we propose that our model may prove useful in the study of
tumour dynamics and consequently the simulation algorithm presented herein may
find applications in the study of processes influenced by them, such as optimization
of drug delivery strategies [62]. Obviously, the progression of tumour development
as a function of time may not be observed experimentally because the dissection of
a tumour, at any given time step, requires the sacrifice of the specimen. In addition,
technically it is quite difficult to monitor vessel displacement on a tissue section; the
plane of the section must pass from the longitudinal axis of the deformed vessel as
well as from the solid tumour itself. Analysis is further complicated by the fact that

Fig. 7 Vessel displacement due to avascular growth of a neighboring solid tumour. Sections (thick-
ness: 8μm) of a frozen, early human ovarian tumour were fixed in cold acetone for 10min and
washed in phosphate buffered saline (PBS). After blocking of the slides with 10% normal goat
serum for 30min and washing in 1xPBS, the slides were incubated with anti-CD31 FITC (BD)
(1:50) at 4 ◦C overnight. The following day the slides were washed 3 times in 1xPBS and mounted
with DAPI containing medium. The CD31 antigen (bright green) is a specific marker present on the
surface of endothelial cells. DAPI (blue dye) stains cell nuclei. The yellow line is an approximate
delineation of the border of the solid tumour at the left bottom corner. The concave side of the
deformed vessel reflects the contour of the tumour border, indicating that it is caused by the growth
of the nearby tumour. This tumour is still in the avascular phase as no endothelial cells may be
observed within its mass. Such observations are consistent with our hypothesis that tumour growth
may cause vessel displacement during the avascular phase
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vessels are usually not straight and appear branched. However, we have been able to
document vessel distortions and deformations induced by tumour growth during the
avascular phase (Fig. 7). Such observations are consistent with our simulation anal-
ysis indicating that tumour growth causes vessel displacement during the avascular
phase.

5 Conclusions

We developed a model and a simulation algorithm for the study of the interplay
between tumour growth and tumour induced vessel displacement. Our digital exper-
iments strongly indicated that tumour induced vessel displacementmay affect tumour
progression. Therefore, our model highlights the importance of taking into account a
factor that was overlooked in previous models and urges for experimental validation
in a biological system. Furthermore, the model and algorithm can be extended to
model tumour growth after the angiogenesis onset by incorporating the diffusion of
tumour-derived angiogenetic factors, such as VEGF, towards the blood vessel and
the formation of new vessels. The model presented here can be expanded to three
dimensions by considering a 3-D CA lattice, where the lattice sites will be cubes, and
by solving the 3-D diffusion equations for oxygen and glucose on this lattice. This
will include the 3-Dmotion of the molecules and may elucidate further the dynamics
of tumour growth and vessel displacement.

Our model and algorithm can be used for the study of various tumour growth
scenarios with applications such as understanding early tumour growth dynamics
and mechanics, drug and nanoparticles delivery in chemotherapy, access of growth
factors and other plasma factors to the tumour, etc.
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Abstract There are several standard modalities of cancer therapy, among which
chemotherapy is the most commonly employed. Drugs used in chemotherapy could
reduce the tumour mass or cause cancer cell death but, they are almost always
associated with some complications and side effects causing damage to healthy
cells. Multidrug-resistance is the main reason of cancer treatment failures, and
it involves three elements: macroscopic, microscopic and mesoscopic resistance.
The heterogeneity of tumour masses contributes significantly to the development of
drug resistance. The mechanisms behind drug-resistance can be classified into four
groups: drug efflux, alterations in target molecules, blocked apoptosis and tumour
microenvironment. These mechanisms may include alterations in target molecules,
altered membrane transport, decreased drug activation, altered expression of drug-
metabolism enzymes, drug inactivation, enhanced DNA repair, failure of apoptosis
and modifications to tumour microenvironment. Several mathematical models have
been proposed to describe the cellular heterogeneity of cancer in order to optimize the
development of anti-cancer treatment. These models are based on differential equa-
tions or integro-differential equations depending on the complexity of the model.
Many strategies have been developed to overcome multidrug resistance in cancer, in
particular, the RNAi and three different generations of MDR inhibitors have been
generated thus far, although problems still persist. Other methods designed to over-
come multidrug resistance include: nanomedicine therapeutic approaches based on
different types of nanoparticles or a combination of nanoparticles, anticancer drugs
and MDR modulators, and antiangiogenic therapy.
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1 Introduction

Treatments for patients suffering from cancer aim at destroying cancer cells while
striving to reduce damage to the healthy cells or tissues. Each treatment depends on
the type of pathology, the molecular features of the cancer, its location in the body,
the general health status of the patient, and the presence or absence of metastases.
The modalities generally employed to treat cancer include surgery, radiotherapy
and chemotherapy. These procedures can be used alone, in combination, simulta-
neously or in sequence. Among the many treatments, one of the most frequently
employed is chemotherapy (CTX), which consists of a large group of cytotoxic
drugs which are intended to reduce the tumour mass by inducing cancer cell death.
Since chemotherapy usually involves systemic administration, it also affects healthy
cells due to its non-specific effect on the patient. Chemotherapeutic drugs can only
be used for a limited period of time due to their sometimes debilitating side effects.
Moreover, the patient undergoes a significant amount of psychological and physical
stress [1].

CTX drugs are antineoplastic (or antiblastic) drugs which act by means of two
main mechanisms. First, their direct interaction with DNA, mainly employing anti-
alkylating agents, prevents DNA from duplicating. Second involves their interac-
tions with the biosynthetic pathway of DNA and RNA precursors (for instance,
antimetabolites). Additionally, other pharmacological agents in combination thera-
pies target microtubules and another group of drugs interrupt signaling pathways.
In the first case, the effect of the drug is independent of the time of exposure to
it, although it depends strongly on the drug concentration. In the second case, the
therapeutic effect depends on the time of exposure, because the longer the exposure
time, the greater the number of the cells going through the metabolic pathway are
being blocked by the drug. These drugs can enter the cells along the concentration
gradient by the ABC transporter molecules (passive transport), but the absorption of
high concentrations of the drug only occurs through active transport [2].

Most of the CTX drugs are natural compounds extracted from plants, while others
are synthetically generated small molecules. They can be classified into four major
groups, according to their mode and site of actions (Fig. 1):

• Antimetabolites: they include folate, pyrimidine and purine antagonists. Folate
antagonists inhibit the dihydrofolate reductase (DHFR), which is an enzyme of
the nucleotide metabolism. Pyrimidine antagonists, especially 5-fluorouracil and
arabinosylcytosine, are inhibitors of pyrimidine nucleotide formation. In addition,
5-fluorouracil affects some of the processes involving the synthesis of thymine
from uracil. Purine antagonists are another type of antimetabolites that hinder the
formation of adenine and guanine [3].

• Genotoxic agents: they affect enzymes involved in the apoptotic process. They
can be divided into several clusters, among which are alkylating agents, which are
genotoxic and may cause DNA mutations, intercalating agents, which interfere
with the polymerase activity, and also enzyme inhibitors. An adverse effect caused
by genotoxic agents is the possibility of the growth of secondary cancer cells.
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Fig. 1 Sites of action of cytotoxic agents

• Mitotic spindle inhibitors: during the mitotic process, they affect the generation
of microtubule containing mitotic spindles, which are indispensable in the chro-
mosome alignment and segregation. They may also cause adverse side effects on
healthy cells, especially those characterized by rapid replication [1, 4].

• Agents used to target tumour vasculature in order to interrupt the tumour progres-
sion, since the tumour cells require a steady blood supply for the provision of
oxygen and nutrients. Angiogenesis inhibitors obstruct the formation of blood
vessels in the area in and around the tumour site. These agents, however, might
also limit the perfusion of cytotoxic drugs [5].

2 The Problem of Drug Resistance

In the case of chemotherapy-based drug treatments, the tumour often develops a
complex mechanism of multidrug-resistance, meaning a resistance to the action of
several drugs. Drug resistance can be divided into three main categories: pharmaco-
logical, physiological and cellular resistance (see Fig. 2). Taken together, they lead
to the failure of the treatment [2]. These three categories are also called respectively
macroscopic (systemic) resistance,mesoscopic (physical,mechanical) resistance and
microscopic (local) resistance. Macroscopic resistance is affected by pharmacoki-
netics, which, in turn, consists of four stages: absorption, distribution, metabolism
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Fig. 2 Types of drug resistance

and excretion (ADME). Absorption is influenced by the type of administration of
the drug and by the interaction between food and antineoplastic drugs. Distribution
depends on gender (women are more likely subject to pharmacokinetic variability
during their menstrual cycle), age and weight of the patient (during the treatment the
patients usually lose weight, so that a dose adjustment is needed). Moreover, drug
distribution is also affected by the circadian rhythms and by the bonding between the
drug and the plasmaprotein (albumin and alpha-1-acid glycoprotein).As regards drug
metabolism, it mainly triggers a change in the drug polarity and its hydrophilicity.
Finally, the excretion of the drug may be controlled and could change during therapy
causing damage to healthy organs, for examples kidneys [5].

Resistance to a specific drug occurs when the adequate cytotoxic concentration,
for the required amount of time, is not achieved. This mechanism takes place when
the neoplastic cells are confined to organs which are difficult for drugs to reach—the
so-called sanctuaries, such as the central nervous system and the testicles, which are
separated by blood barriers. Complications in the therapeutic strategy may add to
this process, e.g. an excessively low dose [3]. Also, the physiology of the tumourous
masses can induce drug resistance, for instance a tumour of large volume produces
vast ischemic areas that can hinder the transport of the drug and the transport of
oxygen near the cancer cells. Moreover, the presence of ischemic areas induces the
selection of cells with P53 mutations. These cells are not able to undergo apoptosis,
which is why they are resistant to many drugs. The geometry of the vessels, the
blood viscosity in the vessels near the tumour and the role of the extracellular matrix,
which causes impairments in drug diffusion, are important factors involved in the
mesoscopic resistance [5]. Cellular resistance can be divided into two clusters: the
intrinsic resistance, i.e. resistance developed during the first drug administration,
and the acquired or secondary resistance, which is the resistance to a drug that at the
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beginning of the cure was successful and which may show up if relapse occurs [6,
7]. The microscopic resistance is due to the alteration of drug residency in cancer
cells by proteins such as P-glycoprotein 1 (P-gp) andmultidrug resistance-associated
protein 1 (MDR1), but it is also caused by the alteration of the drug target and by
the so-called microenvironmental resistance. Furthermore, this kind of resistance
is featured by the concentration of oxygen and glucose, the pH gradient, which is
more acidic extracellularly and more alkaline intracellularly, the tumour-tumour or
tumour-stromal communication processes and the activity of cytokines and growth
factors [2, 5].

A vast majority (approximately 90%) of pharmacological cancer therapies even-
tually meet resistance to the drug. In particular, chemo-resistance, often called
tachyphylaxis, takes place when a cancer which has begun reducing its size due
to chemotherapy drugs, starts to grow again. The main cause of the onset of chemo-
resistance is that the tumour is a heterogeneous agglomeration of different types of
cells derived fromonemutated stem cell which has replicated over a number of gener-
ations. Two same kinds of tumours will never be molecularly identical, since they are
extremely heterogenous. Genetic, epigenetic, transcriptomic and proteomic proper-
ties cause the heterogeneity of the tumour. In particular, genotypic factors include
mutations, gene amplification, deletions, chromosomal rearrangements, transposi-
tion of genetic elements, translocation and microRNA alteration, while epigenetic
factors, which are often consequences of genotypic factors, may lead to stochastic
variations between cells or to a hierarchical organization of the cell [2]. This makes it
hard for pharmacological treatments to affect tumours, because one drug can attack
or eliminate only one or few types of cells within the tumour mass [3, 4].

Many solutions have been attempted in an effort to overcome the phenomenon of
drug resistance. Usually, patients are given several antineoplastic drugs, following
a specific procedure called polychemotherapy. The main aim of a polychemothera-
peutic regimen is to avoid the selection of the neoplastic population which is resistant
to the drug. Moreover, the clinical outcome of the combination of drugs is gener-
ally better than the sum of the effects of the agents employed individually in the
monotherapy. We refer to this as synergistic action of drug combinations. Conse-
quently, polychemotherapeutic treatment can provide the same results with lower
dosage, thus causing less toxic effects in the organism. However, the main problem
with this method is that one drug may counteract or neutralize the effects of another
[5] (Fig. 3).

3 Mechanisms of Drug Resistance

As stated above, multidrug resistance (MDR) is a phenomenon in which cancer cells
exhibit a cross-resistant phenotype against multiple unrelated drugs that are struc-
turally and/or functionally different andmay also have differentmolecular targets [8].
Several host factors are involved in the development of both intrinsic and acquired
MDR, including those that impair the delivery of anticancer drugs to the cancer
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Fig. 3 Causes of chemotherapy failures

cells and nullify their cytotoxic effects, and those that alter the genetic or epigenetic
factors of cancer cells, which lead to drug insensitivity [8]. It is possible to identify
four main mechanisms, which are responsible for the drug resistance progress and
the possible failure of a particular anti-cancer treatment (see Fig. 4).

The drug efflux mechanism is an over-expression of the biological process whose
purpose is to prevent over-accumulation of toxins within the cell. It is probably one

Fig. 4 Upregulation of ABC transporters on cancer cell membranes effectively removes drugs and
cytotoxic agents as a means of drug resistance
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of themost significant forms of resistance which reduces the efficacy of the variety of
antineoplastic agents currently used, caused by a group of membrane proteins, which
extrude cytotoxic molecules, keeping intracellular drug concentration below a cell-
killing threshold [1]. These transmembrane proteins are called ATP-binding cassette
(ABC) transporters, comprising a family of 49 members in humans, which regulate
the flux across the plasma membrane of multiple structurally and mechanistically
unrelated chemotherapeutic agents (see Fig. 4).

These transporters have broad substrate specificity and are able to cause efflux
from cells of many xenobiotics, including vinca alkaloids, epipodophyllotoxins,
anthracyclines, taxanes, and kinase inhibitors. Hence, they protect cancer cells from
many chemotherapeutic drugs. An example is MDR1 gene (Multi Drug Resistance
1) which is normally expressed in almost all tissues at low levels, but it becomes
overexpressed in many tumours (causing intrinsic drug resistance) and, sometimes,
the expression of MDR1 can be induced by chemotherapy (also resulting in the
acquired development of MDR) [9]. The MDR1 gene encodes P-glycoprotein (P-
gp), a plasma membrane protein, which consists of two ATP binding cassettes and
two transmembrane regions. P-gp can detect and bind a large variety of anticancer
drugs and other hydrophobic compounds, including anthracyclines, epipodophyl-
lotoxins, vinca alkaloids, and taxanes [8]. This drug binding activity results in the
activation of one of the ATP-binding domains of P-gp and the subsequent hydrolysis
of ATP, leading to a major change in the shape of P-gp, which causes expulsion of
the drug from the cancer cell [8].

In several cases, the target of a particular therapy can be modified to the point that
it becomes no longer useful. The cause of these processes is linked to genemutations,
which are very common in cancer cells and can be treated by cytotoxic drugs. These
drugs are able to disable a component, whose continuous function is necessary for the
cell survival. There are some cells that, surviving the treatment, can carry a gene for
that target, which has mutated in such a way that it produces a protein that retains its
activity but no longer binds to the drug for stereo-chemical reasons, and is therefore
not inhibited by it [1]. Thismechanismproduces drug resistance. For example, several
kinases, such as members of the epidermal growth factor receptor (EGFR) family,
are constitutively active in certain cancers, and this leads to uncontrolled cell growth.
In most circumstances, mutations cause the over-activation of kinases. However, the
same effect may sometimes result from gene over-expression. Human epidermal
growth factor receptor 2 (HER2), a receptor tyrosine kinase in the EGFR family,
is overexpressed in 30% of breast cancer patients, and drug resistance can result
after long term use of inhibitors targeting this kinase. Another example of drug
target alteration has been observed in the androgen receptor. In almost 30%of prostate
cancers, the androgen receptor is genomically-amplified, thus enabling these cancers
to become resistant to androgen deprivation therapy using the drugs leuprolide and
bicalutamide. However, these drugs cannot inhibit all molecular targets [3].

The aim of most anticancer drugs is to activate cell cycle arrest or to induce the
cellular death pathways inside the cell (see Fig. 5). Apoptosis has two established
pathways: one is an intrinsic pathway mediated by the mitochondria, which involves
B-cell lymphoma 2 (BCL-2) family proteins, caspase-9 and Akt. The other is an
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Fig. 5 Unfixable DNA damage in a normal cell and in a cancer one (left panel) and an illustration
of the tumour microenvironment (right panel)

extrinsic pathway that involves the death receptors on the cell surface. The intrinsic
and extrinsic pathways merge through the activation of down-stream caspase-3,
which eventually causes apoptosis. However, there is also additional cross-talk
between these pathways [3]. One of the most common pathways aims to repair
the damage of cellular DNA, induced by the therapy.

Many chemotherapeutic drugs induce DNA damage either directly, in case of
platinum-based drugs, or indirectly, for example, using topoisomerase inhibitors.
Unfortunately, dysregulation or impairment of certain DDR genes and mechanisms
either by mutations or epigenetic silencing are common in many cancers. DNA
damage induces cell cycle arrest, which has evolved to allow cells time to repair the
damage.

In some cancers, the regulation of cell cycle arrest is disrupted owing to gain-
of-function alterations to oncogenes and/or loss-of-function alterations to tumour
suppressor genes [9]. In this respect, P53, a tumour suppressor protein, plays a crucial
role in regulating a variety of functions in response to different cellular stresses,
including DNA damage and oncogene activation. Stress causes accumulation of P53,
which is responsible for cell cycle arrest in the G1 phase or can trigger apoptosis; the
intensity of these processes depends on the extent of DNA damage. Recent studies
show how the loss of P53 function in cells with mutated P53 genes inducesMDR. An
example of this aspect is found in lymphoblastic leukemia, melanoma, osteosarcoma,
breast, ovarian, and testicular cancers, which have been reported to express mutant
P53. Mutations, amplifications, chromosomal translocations and overexpression of
the genes encoding particular proteins have been linked to various malignancies
and to the resistance to chemotherapy and targeted therapies. An example of these
proteins is given by the anti-apoptotic BCL-2 family of proteins, which can inhibit
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apoptosis induced by wild type P53. For this reason, an overexpression of BCL-
2 proteins results in the resistance of cells to different drugs such as paclitaxel,
etoposide, mitoxantrone and doxorubicin [8].

The microenvironment of a solid tumour is composed of cancer cells and stromal
cells, including fibroblasts and immune cells, embedded in an extracellular matrix
(see Fig. 5). The tumour stroma has a large number of fibroblasts, which synthe-
size growth factors, chemokines, and adhesion molecules. The interactions between
cancer cells and these factors can affect the sensitivity of the cells to apoptosis
signals and their response to chemotherapy, and is known as cell adhesion-mediated
drug resistance (CAM-DR). Tumour cells can also form polarized three-dimensional
structures by means of interactions with the basement membrane and ligation of β4
integrins, which regulate polarity and NF-κB activation. Another important factor is
related to the pH of the tumour microenvironment, which can influence the efficacy
of cytotoxic drugs and may inhibit their active transport. The extracellular pH in
tumours is acidic and the intracellular pH is neutral to basic. Thus, weakly basic
drugs, such as doxorubicin, are protonated and have reduced cellular uptake while
weakly acidic drugs, such as cyclophosphamide, tend to concentrate in neutral extra-
cellular space. Drug distribution is also affected by the composition and organization
of the extracellular matrix. In tumours with a well-organized collagen network, high-
molecularweight drugs are not able to penetratewhen compared to a poorly organized
collagen structure. Further, the tumour microenvironment can create hypoxic situa-
tions in which tumour tissue has a diminished oxygen supply contributing to MDR.
These areas result from abnormal angiogenesis or from the compression/closing of
blood vessels by cancer cells. This reduced blood flow may lower the concentrations
of chemotherapeutics in hypoxic cells. In addition, hypoxia can lead to the activation
of genes associated with angiogenesis, survival, and glycolysis through the transcrip-
tion factor hypoxia-inducible factor 1 (HIF-1) and may contribute to the emergence
of a drug-resistant phenotype [10].

4 Differential Equation Models Used to Represent Cellular
Heterogeneity

An ordinary differential equation (ODE) contains one or more functions of an inde-
pendent variable and its derivatives. It is important to underline the presence of a
single independent variable because it justifies the fact that if these models are used
to describe a cell population, spatial discretization must be introduced. Specifically,
the heterogeneity of a cell population varies over time and according to a phenotypic
variable, if in the model the time is assumed as an independent variable, the only
way to introduce heterogeneity is through spatial compartments within the pheno-
typic variable, which remains constant. In this way models with spatially-structured
population are introduced [11]. The use of this compartmentalized space does not
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Fig. 6 The model shown here is based on ODE equations and represents a cell population with
phenotypic heterogeneity and genetic homogeneity [13]

best represent the physiological reality but can be applied to represent the resistance
to cancer cells, as is described below in the analysis of ODE models (see Fig. 6).

The integro-differential equation (IDE) models introduce a phenotypic variable
that describes the phenotypic heterogeneity in a continuous way, and no longer
constant in each spatial compartment as in the ODEmodels. Differential terms differ
from the ODEmodels only in the integral term that represents non-local interactions,
for example the interaction of a cell with the other cells of the population, whatever
their phenotype [11]. Such models represent a population of cancer cells exposed to
cytotoxic drugs with the goal to investigate how intra-tumour heterogeneity affects
multi-drug resistance [12]. Cancer cells were assumed to experience uniform expo-
sure to a cytotoxic drug and drug resistance of a cell was assumed to represent small
changes between cell generations through genetic or epigenetic mechanisms. The
net growth rate of the cell during the therapy was represented by the level of resis-
tance and the total size of the cell population. The numerical simulations performed
made it possible to understand that therapy acts as a selection process that causes the
expansion of resistant clones and the increase heterogeneity in cancer cell popula-
tion. The authors thus proposed that treatment which reduces phenotype alteration
rates may improve targeted therapy [12].

Evolution of anODEmodel to an IDEmodel is often used to study drug resistance.
The main objective is to start from a simple model and gradually progress by better
representing the physiological reality of drug resistance in cancer cells.

The cancer cell population is subjected to stress represented by cytotoxic and
cytostatic therapy. The evolution over time of the number of cancer cells is described
by the functionN(t) with an initial conditionN0. The factor r is the basic proliferation
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rate, also called net selection rate [13]. The term d*N(t), called a logistic term [13],
indicates an additional death rate directly proportional to the number of cells. A
fundamental hypothesis is the non-exponential proliferation of cancer cells due to
competition for space and nutrients in the area of solid tumour development. Now,
by applying changes to the previous model it is possible introducing a phenotype-
structured model with a phenotypic variable representing phenotypic heterogeneity.
This leads to a passage from an ODEmodel to an IDE model. The number of cells is
represented by n(t, x) at time t and phenotype expression level x that varies between
0 and 1 and defines the resistance to a given drug. The model also introduces ρ(t) =∫
1 n(t, x)x where ρ(t) sums all cells with different phenotypes. Net selection rate is

a function of the phenotype variable and the logistic term depends both on time and
phenotype x. The model is often used in the adaptive dynamics of the cell population
to describe the selection phenomenon, so only cells with certain phenotypes can
survive. This elementary model is based on two main concepts: the convergence of
ρ(t) to maximum value and the density of cells n(t, x) with a given phenotype x.
The areas of maximum concentration are the zones of the phenotypic variable that
resistance to drug is found. This reasoning can be interpreted as the convergence of
n(t, x) to a sum of Dirac delta functions located on resistant phenotypes.

To better represent the physiological reality, it is good to modify the model by
introducing two populations of cells, one healthy and one cancer [13]:

∂nH

∂t
(t, x) = [rH (x) − dH (x)(aHHρH (t) + aHCρC(t))]nH (t, x)

∂nC
∂t

(t, x) = [rC(x) − dC(x)(aCCρC(t) + aCHρH (t))]nC(t, x)

where:

ρH (t) =
1∫

0

nH (t, x)dx, ρC(t) =
1∫

0

nC(t, x)dx

These equations incorporate terms, which quantify the competition between the
two populations for proliferation and survival (aHC , aCH ). The competition exists
both between cells of different types and between cells of the same type since we
find the terms: aHH and aCC. The cells compete more with those of the same type
rather than with the cells of the other type, so we assume: aHC < aHH and aCH < aCC
[13].

The current model describes exhaustively the time course of the healthy and
cancerous populations, but to better represent the effect of the drugs to which they
are subjected it is useful to make new changes to the model. Hence infusion rates of
the cytotoxic drug u1 and cytostatic drug u2 are therefore introduced [13].
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∂nH

∂t
(t, x) =

[
rH (x)

1 + αHu2(t)
− dH (x)(aHHρH (t) + aHCρC(t)) − μCu1(t)

]

nH (t, x)

∂nC
∂t

(t, x) =
[

rC(x)

1 + αCu2(t)
− dC(x)(aCCρC(t) + aCHρH (t)) − μHu1(t)

]

nC(t, x)

whereμ[H,C] represents the phenotype-dependent response to the cytotoxic drug,with
concentration u1(t), and α[H,C] represents the sensitivities to drug u2.The cytotoxic
drug kills the cell by increasing the death term, while the cytostatic drug only slows
down proliferation, but does not arrest it. The goal of this model is to minimize ρC(t)
in a therapeutic time-window [0, T]. The model must simultaneously meet these
requirements:

1. Do not exceed the maximum tolerable dose 0 ≤ u1(t) ≤ u1, 0 ≤ u2(t) ≤ u2
2. Prevent the growth of too large a solid tumour ρH (t)/[ ρH(t) + ρC(t)] ≥ θHC

where θHC [14] denotes the ρH (t)+ ρC(t) proportion of divisionwithmutations.
3. Avoid side effects on the healthy cell population ρH (t) ≥ θH ρH .

The model described here allows to study the effects of different drug doses on
cell populations. For example, if we consider a high dose administration for a long
time, we do not respect the last two constraints of the model and so we do not arrive
at an effective treatment.

5 Stochastic Models

In order to account for rapid mutations occurring in realistic analysis of tumour
heterogeneity, stochastic models involving probabilities instead of continuous vari-
ables have been developed. This includes probabilities of cell division, cell death
and mutation events. Figure 7 shows a schematic description of such stochastic
models. Figure 8 demonstrates difference between single- and multiple-drug resis-
tancemodels. In Fig. 9we show possiblemutation states of cell phenotype depending
on the drug resistance effect.

The probability that an event happens depends on the treatment applied.Wedenote
two parameters: the growth rate of cancer cells (L) and their death rate in the absence
of the drugs (D). Hence, it is possible to observe a clonal expansion in the absence
of treatment when L > D. In general, the turnover of cancer cells is the ratio of
the natural death rate and the proliferation rate in the absence of treatment, that is
0 ≤ D/L < 1. If D = 0 or L � D, a low-turnover cancer case occurs that defines a
low-death cancer (almost no cell death), while D ≈ L describes high-turnover, such
as slow-growth cancers. Also introducing the effect of drug-induced death rate, we
obtain D + H > L that causes an imbalance that leads to the colony reduction (with
the net cell death rate being larger than the birth rate). This parameter is important
to estimate the drug resistance, as well as the intensity of the therapy. In fact, if
a cell is resistant to all drugs applied, then its drug-induced death rate is simply
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Fig. 7 A summary of the assumptions used in stochastic models of drug resistance in tumours

Fig. 8 Differences between mathematical models of single drug and multiple drug resistance

zero. On the other hand, if a cell is susceptible to at least one of the drugs, then
its drug-induced death rate is equal to a constant, H, which quantifies the intensity
of the therapy [15]. In the case in which the cell is resistant to a single drug (m =
1) and not to all others used. We now focus on mutant’s creation: it is possible to
distinguish the probability that this happens before the start of treatment (Pm↑) and
during therapy (Pm↓). Another important parameter is the size of the tumour. It is
difficult to estimate the age of cancer at the beginning of therapy but is possible to
measure the size. In particular, the probability that resistant mutants pre-exist before
treating a tumour of size N, defined as “treatment size”, has been investigated in Ref.
[16]. Figure 10 plots the tumour size N as a function of the death rate D for various
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Fig. 9 Mutation diagram corresponding to three drugs [16]. Each node is a cellular type (pheno-
type) identifies by a binary number of length m. It describes the resistance properties: “0” means
susceptible to the drug corresponding to its position and “1” means resistant. An example is 101:
this phenotype is resistant to drug 1 and 3 but not to drug 2

Fig. 10 Plot of the
probability of producing
resistant mutants before
treatment, depending on the
death rate of tumour cells, D
[16]

numbers of chemotherapy drugs used, m. For m = 1 this is linear, instead for m =
2 and higher, this dependence becomes increasingly strongly nonlinear. This means
that, if the number of drugs increases, the higher natural death rate of tumour cells
causes a higher production of the resistant mutants and thus the treatment will likely
fail.

Below we list our final considerations in this area:

• The dependence on the turnover rate is very strong in the pre-treatment phase:
for high values of the ratio D/L, the probability that the resistant mutants are
generated before the therapy begins is very high.
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• For H = Hc and H > Hc we have Pm↑ > Pm↓ again, which indicates the role of
the pre-existing resistance, in addition to the fact that this effect is a lot stronger
than in the single-drug case. It indicates that the pre-treatment phase always plays
an important role in treatment failure.

In conclusion, resistance arisesmainly before the start of treatment and, for cancers
with high turnover rates, combination therapy is less advantageous over single-drug
therapy. In contrast, for low-turnover rates, increasing the number of drugs will
increase the success of therapy.

The methods described above can be applied to cancers treated with targeted
therapy. An example of this is CML (chronic myeloid leukemia) because blast crisis
corresponds to the clonal expansion processes described by the above model, and
drug activity, as well as resistance mechanisms, are well defined [16]. The treatment
is developed in three phases: the first is the chronic phase, characterized by expansion
of terminally differentiated cells; the second is the accelerated phase, in which there
is an increase of undifferentiated cells; finally, the blast crisis, where undifferenti-
ated cancer cells undergo large expansion caused by genomic instability. The drug
used to treat CML, imatinib mesylate (Gleevec), is not mutagenic and it is a small-
molecule inhibitor of the BCR-ABL kinase [16]. The resistance to non-mutagenic
drugs is mostly generated before treatment. In fact, treatment of blast crisis often fails
because of drug resistance. Instead, usingGleevec at the start of cancer progression is
usually successful. Simulations invovling biological parameters of the phenomenon
of genetic instability [25] were based on experiments with susceptible CML cell lines
with ameasured viability at about 90% [26]. Komarova andWodarz [16] started from
the range of D/L = 0.1 0.5 and considered that the size of advanced cancers was
<1013 cells [27]. They proposed the use of different values of D/L and u to analyze
various treatment options and found that a combination of three drugs should prevent
resistance and ensure successful therapy even for advanced cancers. As long as the
point mutation rate is elevated less than 100-fold by BCR-ABL, triple drug therapy
should prevent resistance [16].

6 Methods to Overcome Multidrug Resistance

Many efforts have been made during the past several decades to enhance the efficacy
of chemotherapy by suppressing or evading MDR mechanisms. Several strategies
are now available (see Fig. 11) including the use of new anticancer drugs that could
escape from the efflux reaction, MDR inhibitors, multifunctional nanocarriers, and
RNA interference (RNAi) therapy [8].

MDR Inhibitors: A method to overcome resistance to anticancer drugs is to admin-
ister compounds that would not be toxic themselves but would inhibit ABC trans-
porters [17]. These MDR modulators have been classified as first, second and third
generation MDRmodulators based on their affinity for transporter proteins and their
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Fig. 11 A summary of the strategies to overcome drug resistance

relative side effects [8]. First-generation MDR drugs were not specifically devel-
oped for inhibiting MDR and their affinity was low for ABC transporters and, conse-
quently, they led to several side effects and a high dose of the cancer drug was needed
to produce sufficient intracellular concentrations [17]. Among them, cyclosporin A,
a commonly used immunosuppressant, remains one of themost effective first genera-
tionMDRmodulators [17]. Figure 12 shows 2D and 3D structures of the compounds
discussed in this section.

Second-generation chemosensitizers were designed to reduce the side effects of
first- generation drugs. However, they still retain some characteristics that limit
their clinical usefulness [17]. Many of the anticancer drugs are metabolized by
the cytochrome P450 isoenzyme 3A4, but most of the second-generation MDR
chemosensitizers are also substrates for cytochrome P450 3A4 and this could inhibit
the normal metabolism of the anticancer drug and result in unpredictable pharma-
cokinetic interactions [8]. Indeed, co-administration of an MDR modulator usually
elevates plasma concentrations of an anticancer drug by interfering in its metabolism
and excretion, thus leading to unacceptable toxicity that necessitates chemotherapy
dose reductions in the clinical setting down to pharmacologically ineffective levels.
Another problem with second-generation MDR modulators is their specificity. In
fact, they do not just inhibit some of the most common ABC transporters present in
cancer cells, but they are substrates for almost the entire ABC transporter family [17].
However, ABC transporters have well- defined physiological roles, often involving
the elimination of xenobiotics, in regulating the permeability of the central nervous
system (blood–brain barrier) and the placenta, thus preventing these systems from
being exposed to cytotoxic agents circulating in the blood. Inhibition of these trans-
porters could lessen the ability of normal cells and tissues [17]. Valspodar (PSC 833)
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Fig. 12. 2D and 3D chemical structures of (from top to bottom): cyclosporin, valspodar, tariquidar,
curcumin, and tetrandine

is an example of second generation chemosensitizer. It is a derivative cyclosporin D
and it is approximately 5-to 30-fold more potent than cyclosporine A in vitro [8].

Third-generation molecules have been developed to overcome the limitations of
the second generation MDR modulators. They are not metabolized by cytochrome
P450 3A4 and they do not alter the plasma pharmacokinetics of anticancer drugs.
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Third-generation agents specifically inhibit P-gp and do not inhibit other ABC trans-
porters. Because of their specificity for P-gp transporters and lack of interaction with
cytochrome P450 3A4, third-generation P-gp inhibitors offer significant improve-
ments in chemotherapy without a need for chemotherapy dose reductions [18].
Clinical trials with these new third-generation agents are ongoing with the aim for
survival prolongation in cancer patients. None of them has found a general clinical
use so far [17]. One of the most promising third-generation P-gp inhibitors is tariq-
uidar, which binds specifically and non- competitively to the P-gp pump with a high
affinity and potently inhibits the activity of the P-gp transporter [17]. Recently, many
promising strategies have emerged using natural compounds to overcome MDR.
These modulators are low in toxicity and are well tolerated in the human body [8].

For example studies on curcumin revealed that it has many anticancer proper-
ties mainly due to its ability to inhibit the transcriptional nuclear factor kappa beta
(NFκβ), which is a master regulator of inflammation, cell proliferation, apoptosis,
and multidrug resistance in cancer cells [19]. There are also many natural alkaloids
possessing potent inhibition of P-gp efflux pump and other related pumps responsible
for the development of resistance. For example, recently a natural alkaloid, tetran-
drine (CBT-01) has advanced to the clinical phase [20] and provided an impetus for
the discovery of more of such small molecule natural products as fourth generation
P-gp inhibitors [20].

RNA interference therapy (RNAi) RNAi is a biological process that cells use
to inhibit or silence specific gene expression through the destruction of specific
mRNA filaments triggered by RNAmolecules [8]. The process starts when a double-
stranded RNA molecule (dsRNA) is recognized and cleaved by the enzyme into
shorter fragments of 21–23 nucleotides, called siRNAs. These siRNAs assemble
with protein components forming RNA-induced silencing complexes (RISC) and
here the dsRNA unwinds, removing the sense strand (see Fig. 13). The activated
RISC containing only a single-stranded (antisense) siRNAbinds to the target mRNA.
A component of RISC called Argo cleaves the target mRNA that is subsequently
destroyed by the cell, thereby preventing it frombeing used as a translational template
and silencing the expression of the gene from which the mRNA was transcribed [8].
This natural process can be used for regulation of genes of choice and in the case
of cancer to downregulating the expression of P-gp or alternative ABC transporters
in various tumours [21]. RNAi can be triggered by two different pathways: (1) an
RNA-based approach where the effector siRNAs are delivered to target cells or (2)
a DNA-based strategy in which the siRNA effectors are produced by intracellular
processing of longer RNA hairpin transcripts [21]. The DNA-based approach is
mainly involved in the nuclear synthesis of short hairpinRNAs (shRNAs). Expression
of shRNAs in cells can be achieved via the delivery of plasmids or through viral or
bacterial vectors. Once the vector has integrated into the host genome, the shRNAs
are transcribed in the nucleus,which is transported to the cytoplasmand are processed
into siRNAs by Dicer [8]. Although RNAi therapy offers a very promising strategy
for minimizing the MDR effect, it is not easy to deliver siRNAs to tumour cells
via systemic administration. In fact, naked siRNAs is rapidly degraded by serum
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Fig. 13 The mechanism of RNA interference in mammalian cells

ribonucleases and moreover siRNAs hardly cross the cell membrane because of
their structure. For these reasons different vectors have been developed in order to
enhance the efficacy of RNAi therapy in vivo [22]. Some of them are based on the
use of viral carrier that have a high transfection efficiency, but they enter into the
cytoplasm and not into the lysosomes where the environment is too acidic [8].

Nanoparticles as Drug Delivery System: Strategies for circumventing MDR by
using a Drug Delivery System (DDS) have the potential for serving as an inno-
vative and promising alternative to conventional small-molecule chemotherapeu-
tics, by encapsulating and conjugating drug molecules within a nanocarrier [23].
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Fig. 14 Schematic illustration of the endocytosis of nanoparticles loaded with an active drug [23]

Drugs encapsulated in nanoparticles (Fig. 14) have different pharmacokinetic prop-
erties compared to free drugs. Generally, the drug efflux pumps present on the cell
membrane can sense free drug molecules as they cross the membrane and prevent
them from entering the cell, with their subsequent ejection [23].

To overcome this problem due to the drug efflux pumps and to increase the drugs’
efficacy, the latter can be loaded or encapsulated in nanocarriers and then delivered
to the cellular internal organelles. Nanocarriers are internalized into cells via a non-
specific endocytosis pathway and cross the cell membrane in an ‘invisible’ form. This
is because the encapsulated drugs are not physically recognized as substrates by the
ABC efflux systems. After crossing the efflux containing membranes on endosomal
delivery pathway, the free chemotherapeutics are released into the perinuclear region
of the cytoplasm and can unfold their activities. As an example, a novel polymeric
micelle consisting of doxorubicin and two block copolymers, one conjugated to TAT,
has been produced. The micelle surface hides the TAT during circulation and only
exposes it at a slightly acidic tumour extracellular pH to allow for TAT-induced
internalization into cancerous cells. The micelle core then disintegrates in the early
endosomal pH of the cells to release doxorubicin. Further, the ionization of the
block copolymers aids in disrupting the endosomal membrane, allowing the drug to
accumulate in the cytosol [10].

Thus, nanomedicine is an emerging form of therapy aimed at improving the treat-
ment efficacy and reducing the adverse side effects to normal tissues. Currently, the
knowledge base of nanoparticles is still expanding rapidlywith an emphasis on safety
and efficacy [10]. This form of therapy is based on alternative drug delivery systems,
such as liposomes, polymer conjugates, carbon-based, and metallic nanoparticles.

1. Liposomes are lipid-based vesicles that have the ability to carry payloads in
either an aqueous compartment or embedded in the lipid bilayer; generally



Complexities of Drug Resistance in Cancer: An Overview … 329

based on passive targeting especially on the enhanced permeability and retention
(EPR) effect, for which a leaky tumour vasculature is necessary. One example of
liposomes, modified with monoclonal antibodies, as suitable carrier for targeted
delivery of chemotherapeutic drugs is mAb 2C5 with doxorubicin (Doxil®),
which is in the preclinical phase, whereas others are in clinical trials [10].

2. Polymeric nanoparticles can either covalently attach to or encapsulate thera-
peutic payloads. Their solid cores, ideal for hydrophobic drugs, are highly stable,
have a relatively uniform size and are able to control the drug release. Currently,
two polymers, polylactide (PLA) and poly(lactideco-glycolide) (PLGA), are
polymeric biodegradable nanoplatforms that are used for synthesis of FDA-
approved nanomedicines, whereas many others are undergoing clinical trials
[10].

3. Carbon nanotubes have the ability to enter cells using “needle-like penetration”
[10] and transfer molecules into the cytoplasm. However, toxicity concerns
remain a major challenge for their clinical development.

4. Gold nanoparticles can be used to deliver small molecules such as proteins,
DNA, or RNA. Drugs can easily be attached through ionic or covalent bonds,
or through adhesion. To gain stability and raise circulation time PEG can be
attached to the surface of metallic nanoparticles. Magnetic fields can also be
used to guide the drug to the intended target area within the body. Unfortunately,
their potential clinical use is not presently possible due to the acute in vivo
toxicity.

There are two types of targeting: the nanoparticles that depend on the characteris-
tics of the tumour for drug accumulation are passively targeted, and those conjugated
to therapeutic antibodies, as well as targeting antibodies such as 2C5 are considered
to be actively targeted. Both passive and active tumour targeting abilities of nanopar-
ticles can reduce systemic toxicity and potentially circumvent the problem of drug
resistance [8].

Nanodrugs have a better accumulation profile within a tumour than free drugs,
including paclitaxel, doxorubicin, and many others [10]. Active tumour targeting
is achieved by conjugating nanocarrier systems with various types of ligands that
are specific to receptors overexpressed in cancer cells as compared to normal cells.
The actively targeted nanoparticles improve efficacy, increase binding affinity to the
cancer cells, reach higher accumulation of drug within the tumour rather than other
vital organs, avoid toxicity to normal tissue, and let the drug overcomeMDR. To this
end, different agents can be conjugated with the nanoparticles, such as monoclonal
antibodies (mAbs), e.g. rituximab (Rituxan) for non-Hodgkin’s lymphoma, the anti-
HER2 trastuzumab (Herceptin), the anti-VEGF bevacizumab (Avastin) to inhibit
angiogenesis, and the anti-EGFR cetuximab [10]. However, they may also bind to
the receptors on normal cells causing an activated signaling cascade that may result
in increased immunogenicity.

Aptamers are considered to have high affinity and low immunogenicity but
lack flexibility and in vivo nuclease stability, hence are still in preclinical phase.
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Receptor ligands (peptides) have a small size, ease of synthesis, and typical non-
immunogenicity. Tumour homing peptides include those with an RGD sequence
motif, a binding motif for integrins, which is specifically expressed on tumour
endothelia, and those that have a form of aminopeptidase N (CD13) that binds
peptides with the NGRmotif. Delivery of TNFα using both RGD and NGR peptides
has shown to decrease the effective dose by up to 1000-fold [10]. Further, these
targeting agents play a role in tumour penetration, as is the case with iRGD, because
of the exit from blood vessels, and this represents a major advantage in treating resis-
tant tumours. However, peptides such as RGD can bind to other integrins on normal
tissue making specificity of the peptide a crucial consideration.

Anti-angiogenic therapy: Without the formation of new blood vessels, a tumour
cannot grow larger than about 1–2 mm3 [23]. Through a complex process called
angiogenesis, endothelial cells are able to divide andgrow inorder to create newblood
vessels. Anti-angiogenesis is the process of stopping the formation of new blood
vessels, and, consequently, of stopping the tumour’s growth or spread. Currently,
there are more than 20 angiogenesis inhibitors being tested on a variety of cancers in
clinical trials. Some of them are available commercially and approved by the FDA
for other uses. Other anti-angiogenesis drugs are not yet approved by the FDA and
can only be given to patients enrolled in clinical trials. However, it is too early to
tell if anti-angiogenesis drugs will damage healthy blood vessels that may be needed
elsewhere in the body. The benefits and risks of anti- angiogenesis drugs will be
determined through clinical trials over the next several years.

7 Conclusions

As stated above, the different approaches to overcoming drug resistance have both
advantages and limitations. Among them, nanocarriers offer particular advantages
such as the ability to bypass drug efflux mechanisms via ABC transporters and
can also be conjugated with ligands that can specifically target cancer cells with
overexpressed receptors, presenting a powerful and versatile therapeutic platform.
Most efforts in this field have focused on P-gp. Such studies have increased the
awareness about the complexity of drug resistance in patients, which is consistent
with our knowledge that multiple ABC transporters and MDR mechanisms exist,
and may contribute to this failure. Despite many clinical setbacks in reversing MDR
there are reasons to be optimistic. Indeed, there are already available drugs which
could act to inhibit multiple ABC transporters and to deliver specific MDR reversing
agents to target sites.

RNAi has evolved from a powerful laboratory tool to elucidate the function of
novel genes, to a potential new therapeutic modality against cancer. It provides the
ability to silence virtually any gene with artificial triggers of RNAi, producing favor-
able effects in vitro and in preclinical animal models, although the translation of
such findings to the clinical setting remains a serious challenge. As we begin to
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better understand the mechanisms by which RNAi regulates gene expression, we
can hope to exploit this powerful tool as an adjunct in the multimodal therapy. More-
over, through nanomedicine it has been possible to increase circulation time, refine
multiple targetingmechanisms, enhance drug accumulation at the tumour site, deliver
into the cytoplasm or nuclei of cancer cells, and to carry combinations of therapeutic
payloads. For these reasons this can be considered an attractive treatment option in
overcoming MDR. Numerous unique nanodrugs have been created and researched
extensively, and are already in clinical development. Computational modeling efforts
have allowed for treatment optimization and can further assist in improving clinical
outcomes in the future [28].
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The Immune System in Health
and Disease: The Need for Personalised
Longitudinal Monitoring

Hector Zenil, Abicumaran Uthamacumaran, and Kourosh Saeb-Parsy

Abstract The human immune system varies extensively between individuals, but
variation within individuals over time has not been well characterized. Systems-level
analyses allow for simultaneous quantification of many interacting immune system
components and the inference of global regulatory principles. Here, we present a
longitudinal, systems-level analysis in 99 healthy adults 50 to 65 years of age and
sampled every third month for 1 year. We describe the structure of interindividual
variation and characterize extreme phenotypes along a principal curve. From coor-
dinated measurement fluctuations, we infer relationships between 115 immune cell
populations and 750 plasma proteins constituting the blood immune system. While
most individuals have stable immune systems, the degree of longitudinal variability
is an individual feature. The most variable individuals, in the absence of overt infec-
tions, exhibited differences in markers of metabolic health suggestive of a possible
link between metabolic and immunologic homeostatic regulation.

Keywords Human immunology · Systems immunology ·Mass cytometry ·
Immune variation · Seasonal variation · Plasma proteomics · Computational
biology · Immunity · Cytometry

1 Introduction

There is increasing recognition that the immune systemhas a critical role in the patho-
genesis of most, if not all, diseases. While the role of immune system in disorders
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such as infections and autoimmune conditions has long-been recognised, emerging
evidence indicates that the immune system fundamentally underpins how human
biology responds to all internal and environmental perturbations, both as a conse-
quence of damage or disease, and as part of the normal life events such as ageing
and pregnancy. A better understanding of an individual’s immune system thus has
the potential to transform our ability to deliver personalised healthcare.

2 The Vital Role of the Immune System in Health
and Disease

Cancer is perhaps the best and most commonly studied example of a disorder in
which the contribution of the immune system is increasingly recognised. The role
of T lymphocytes [1], B lymphocytes [2], Natural Killer cells [3], neutrophils [4],
macrophages [5] and other immune cells in the pathogenesis of a range of cancers
is now firmly established. This knowledge is also being leveraged to generate new
therapies that harness and manipulate the immune response to eradicate tumour cells
[6]. The contribution of the immune system is now also increasingly recognised in
cardiovascular diseases including myocardial infarction [7], in metabolic disorders
including type 1 [8] and type 2 [9] diabetes, in neurodegenerative diseases such
as Alzheimer’s dementia, Parkinson’s disease and Huntington’s disease [10], and in
mental disorders such as depression [11]. The immune consequences of dysregulation
of bacteria in the gastrointestinal tract, or ‘microbiome’, are now understood to make
important contributions to a range of diseases including autism, multiple sclerosis,
asthma, liver disease, metabolic disorders, irritable bowel syndrome, diabetes, and
rheumatoid arthritis [12].

The immune system is also critical for the response to injuries, from trivial falls
to major accidents [13]. During injury and disease, the immune system is intimately
involvedintheperceptionofpainanditsconsequencesforrepairandregeneration[14].
Even in the absence of any recognisable injury or disease, the immune system has a
key role in orchestrating ‘normal’ homeostasis in humans. There are also important
differences in immune responses in men and women which are believed to underpin
the different susceptibility of the sexes to disease [15]. The immune system changes
with age and ‘Inflammaging’ is a recent concept in which chronic, low-grade, sterile
inflammation develops and contributes to the pathogenesis of age-related diseases
[16].

The immune system is important in regulating sleep dynamics and the conse-
quences of sleep disturbances [17]. The immune system also plays a central role in
the health consequences of obesity [18]. During pregnancy, maternal immune acti-
vation or dysfunction, such as precipitated by obesity, asthma, autoimmune disease,
infectionorpsychosocial stress, is thought to lead topotential long-termconsequences
for the foetus, including predisposition to neurodevelopmental disorders [19].
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3 Monitoring the Immune System: Challenges

It is clear from this evidence that a better understanding of the perturbations in an
individual’s immune system can potentially transform our ability to determine risks
of disease more accurately, develop more effective preventative interventions, make
earlier diagnoses and develop superior treatments. There is increasing recognition
that the immune system is highly variable between individuals and that discrete
‘immunophenotypes’ exist that are likely better descriptors of how the immune
system of individuals determine their health [20]. The immune system, however, is
exceptionally complex and incorporates a very large number of cells, proteins, epige-
netic factors, and small molecule mediators that interact in a very complicated—and
only partially understood—dynamic network. This complexity may initially seem
to be a compelling deterrent from attempting to decipher the ‘personalised’ associ-
ations between changes in the immune system and diseases for individuals. This is
because—the logicwould argue—the technical, logistic and economic challenges are
likely to prevent ‘deep immune characterisation’ of individuals outside of research
settings for decades. However, such a pessimistic rationale incorrectly assumes that
personalised immune characterisation is entirely dependent on complex and costly
diagnostic tests.

The simplest ‘survey’ of an individual’s immune system is a routinely performed
blood test, known as the Complete (or Full) Blood Count (CBC or FBC). The CBC
enumerates the number and frequency of cells in the blood, including white blood
cells and their main subtypes (neutrophils, lymphocytes, monocytes, eosinophils and
basophils), red blood cells and platelets. The CBC is the most commonly performed
medical diagnostic test performed worldwide (estimated more that 1 billion tests
per year globally) and is incorporated as part of the vast majority of blood tests
performed.

The utility of CBC in diagnosis and monitoring of disease progression and
response to treatment is well established. However, our assessment of the results
is fundamentally at odds with its use as a personalised measure of the individual’s
immune system. This is because the results of CBC tests are invariably categorised
in a binary manner as ‘normal’ or ‘abnormal’ with reference to population norms.
However, these population normal are surprisingly broad: The ‘normal’ total white
blood cell (WBC) range is typically 4.0–11.0 million cells per microlitre of blood.
The equivalent population normal reference values for neutrophils and lymphocytes
are 2.0–7.5 and 1.0–4.5 million cells per microlitre of blood. This binary system of
classification of CBC results implies that some immune cells in an individual’s blood
can increase by 300–400% in number, but such a huge change could, or should, be
safely ‘ignored’ because they still remain within the population ‘normal’ reference
range.

This system of analysis, taught and practised in every healthcare system in the
world today, represents an astonishingly crude approach to understanding health and
disease. Ironically, themedical education system ingrains in allmedical professionals
an acceptance of such a crude binary analysis. Yet, even school children, if left to
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ponder under their own deductive reasoning, are likely to assign significance to such
wide variations in blood cell numbers: If, as we know to be the case, immune cells
are so integral in health and disease, how can it possibly be safe to ignore a 400%
rise in their number? Not attempting to capture this data, and failing to integrate the
data with other known health parameters, is a colossal loss of opportunity to benefit
the society.

4 Monitoring the Immune System: Opportunities

There is emerging evidence in support of the assertion that variations in immune cells
within the ‘normal’ range can have important health implications. In one study, the
total WBC count in ‘healthy’ individuals was found to be predictive of risk of short-
termand long-termdeath, evenwhenknown risk factors (age, smoking, diabetes, high
blood pressure, ethnicity and blood cholesterol levels)were controlled for [21]. In this
studyof >194,000 individuals, thosewith a ‘normal’WBCof 8.65–10.05were almost
3×more likely to die within 6months than thosewith a ‘normal’WBCof 5.35–6.25.
Inanother recent seminal study, the immunesystemofhealthy individuals (as assessed
by the number of a subset of their lymphocytes), was a better predictor of risk of death
than age, leading to the development of the concept of Immune Age [22, 23].

These studies provide compelling motivation for a paradigm-shift in the moni-
toring of the immune system from a population-based approach to a personalised
one. To better understand disease, and to enable and accelerate personalised diag-
nosis, monitoring and treatment, we must redefine norms with respect to a patient’s
individual physiology, and seek to detect andmonitor perturbations from that individ-
uals’ personal baseline. This individualised approached, placed within the broader
context of population data and reference values, has the opportunity to bridge the gap
between population and personalised healthcare. To achieve this, we need to gather
data about an individual’s immune system, not only when disease has clinically
manifested, but also during health.

5 Longitudinal Analysis and Causal Pattern

The understanding of complex adaptive diseases like cancers necessitate the inter-
disciplinary paradigm of complexity science. By merging AI and experimental
cancer research, we can approach cancer cybernetics as complex dynamical systems.
Tumours are complex ecosystems composed of the dynamic interactions between
malignant (neoplastic) cells, healthy host cells, mesenchymal cells, endothelial
cells, extracellular matrices, and infiltrated immune cells which collectively main-
tain inflammatory signals to nourish and regulate the tumour microenvironment
(TME) [24, 25]. The signaling networks of inflammatory-immune cells regulate
cancer progression and metastatic invasion by remodelling the TME, promoting
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immune escape (tolerance), and conferring therapy resistance [24, 25]. The signaling
interactions between cancer-immune cell networks provides a vast source of liquid-
biopsy biomarkers for the diagnostic screening and prognostic prediction of complex
diseases like cancer in precision medicine. Longitudinal data analysis is thence
required to study the complex dynamics across these evolving networks. Prior to
discussing the importance of longitudinal cancer data analysis from patients-derived
liquid-biopsies, the essential properties of cancer-immune network dynamics and
immunotherapies must be clarified.

Cancer immunotherapy attempts to stimulate the immune system to target anti-
gens on cancer cells to destroy them. The central advantage of immunotherapies
is their personalized (patient-specific) targeted approach. The immune cells can be
collected from the patient’s blood,modified to activate a cytotoxic response towards a
tumour-specific antigen(s), and reinjected back to the patient [26]. Despite the avail-
ability of these immunotherapies for certain types of cancers, approximately only
one-third of the patients benefit from the therapies [27, 28]. Identification of potent
and robust clinically targetable biomarkers for effective immunotherapies remains
a challenge due to the dynamic molecular complexity and intratumoral hetero-
geneity in aggressive cancers [27, 28]. Themolecular profiling of tumour ecosystems
based on their antigenicity, tumour heterogeneity, and immunogenicity are required
for effective personalized cancer immunotherapies and improve clinical outcomes
[29]. Furthermore, how therapy affects immune cell counts over time is key for
predicting therapy response and treatment management [27]. Liquid biopsies such as
blood test-based detection of immuno-markers, immune cell count fluctuations, and
blood cytogenetics provide a non-invasive approach to molecular profiling complex
diseases like cancer [30]. Along with the quantification of soluble biomarkers in
blood plasma/serum, the identification of systemic immune cell populations that
correlate with therapeutic responses could provide promising clinical targets, which
include the relative abundance of CD8+ and CD4+T-cells, the expression of immune
checkpoints in peripheral blood cells, and the relative numbers of immunosuppres-
sive cells such as regulatory T-cells andmyeloid-derived suppressor cells [27]. These
biomarkers exhibit fluctuations and oscillations over time.As such, longitudinal anal-
ysis of blood test-derived immune markers are critical for monitoring and regulating
therapeutic efficacy and disease progression in cancer patients.

To illustrate, complete blood count parameters (CBC) were demonstrated
as non-invasively accessible patient-specific biomarkers capable of predicting
immunotherapy response in a study within 986 advanced-stage lung cancer patients
[31]. A significantly decreasing absolute lymphocyte count (ALC), significantly
increasing absolute neutrophil count (ANC) and fluctuating platelet count (PLT)
levels were indicative of metastatic disease progression in the patients [31]. Further,
single-cell RNA sequencing (scRNA-Seq) of patient-derived peripheral blood
extractions revealed that circulating immune-cell phenotype dynamics are robust
biomarkers for predicting therapy response and prognosis [26, 30]. In general,
patients baring tumourswith an immunosuppressive phenotype (e.g., expressing high
levels of PD-L1) exhibit a lower immune cell count prior to treatment. The studies
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concluded that patientswith a low peripheral bloodmononuclear cells (PBMC) abun-
dancewouldmost benefit fromanti–PD-1 immune therapy [30]. Further, an increased
IFN signaling, and differentiation of T-cells was associated to an increased anti-PD-1
immunotherapy response in these patients [30]. Combination therapy may be more
appropriate in personalized precision medicine, tailored the molecular heterogeneity
and complexity of the patient’s tumour.

Molecular profiling of the tumour is thence used to identify patient-specific ther-
apeutic targets. Multi-omics approaches on the tumour biopsy when applicable in
addition to the non-invasive liquid biopsies provide optimal information for quality
patient-care and effective clinical decision-making. However, liquid biopsies-based
measures are better suited and easily accessible for longitudinal analyses. We must
also account for differences in the molecular phenotypes of cancers within pedi-
atric patients and adult patients when assessing therapy response [32]. As children
undergo immune system development in the early ages of their life, their inex-
perienced immune systems implies significant differences in immune responses
compared to adults (i.e., reduced memory cell populations related to less antigenic
exposures) [32]. Hence, pediatric cancers may require less specific immunother-
apeutic agents which simultaneously create a pro-inflammatory environment and
activate immune cells [32]. The infiltrating immune cells create a chronic inflam-
matory and immunosuppressive TME that restricts immunotherapeutic approaches
[32, 33]. Pediatric solid tumours further exhibit significant myeloid and stromal
cell infiltration [32]. Both pediatric and adult TME display a complex interactome
of immune-cells secreted signaling pathways including chronic nuclear factor-κB
(NF-κB), chemokines, cytokines, and growth factors [32, 33].

6 From Dynamic Cellomics to Multidimensional Omics

Cancer treatment modalities and targeted therapies take weeks if not months to
observe clinically relevant effects in most cancer patients. As such, the efficacy of
our current anti-cancer treatments requires longitudinal data analysis. Longitudinal
studies reveal fluctuations and oscillatory patterns in blood count parameters such
as immune cell counts are potent indicators of metastatic cancer progression and
therapy response in cancer patients [34, 31]. Further, as stated, cancers are complex
dynamical systems. That is, cancer signaling, gene expression, protein secretion, and
cellular communication (e.g., immune network dynamics) are dynamic processes
which may exhibit collective behaviours. As such, the concentration of key cellular
biomarkers and proteins may exhibit oscillations which vary over time and require a
long-term time-series analysis for effective clinical decision-making. For example,
the blood sera expression of inflammatory signals such as the cytokine TNFα and
C-reactive protein (CRP) exhibit ultradian oscillations which vary throughout the
day and require a longitudinal (time-series) analysis to understand their complex
signaling dynamics within cancer patients [35, 36].
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In dynamical systems theory, such signaling oscillations are the precursors to
complex dynamics and causal structures. When oscillations are perturbed, they may
bifurcate towards complex, chaotic attractors. Attractors are self-organized causal
patterns (set of points or states) towards which the trajectories of a complex dynam-
ical system tend to evolve in state-space [37, 38]. Attractors govern the temporal
behaviors of the complex system while the complexity of an attractor measures
the control predictability and irregularity of the complex system’s behaviors [37,
38]. Chaotic attractors, also known as strange attractors, are the most complex of
these causal patterns making the system exhibit unstable and irregular dynamics
[38]. Studies have shown that cancer cell fates correspond to unstable, nonequilib-
rium attractors on theWaddington’s epigenetic landscape [39, 40]. With longitudinal
cancer data analysis,we can approach the causal information dynamics across cancer-
immune networks as attractors and verify whether strange attractor states emerge in
the biomarker/signaling oscillations.

Age-related deterioration and diminishment of immune system responses leads
to co-morbidities and mortality, including complex diseases such as cancer [22,
23]. Longitudinal tracking can assess the gradual age-related changes in immune
processes as dynamical systems. The merging of AI algorithms and longitudinal
blood data analyses have shown capable of inferring attractor dynamics as predic-
tors of disease emergence. To illustrate, in a longitudinal study, Alpert et al. [22, 23]
used multi-omics profiling to analyze personalized and population-level immune
system dynamics of 135 healthy adult patients over a 9-year period. They defined a
metric, immune aging (IMM-AGE) score, by use of trajectory inference algorithms
on immune cell profiles, as a causal measure of the patient’s immune homeostasis
and health prediction. Blood samplemeasurements consisted of cellular phenotyping
by single-cell mass cytometry (CyTOF) to assess relative abundance of immune cell
populations and their fluctuations over time, assessment of cytokine responses by
cytokine-stimulation assays, and whole-blood gene expression profiling. Amoderate
rise in immune cells-mediated circulating inflammatory mediators were observed
in patient-derived peripheral blood samples with ageing [22, 23]. This process is
often referred to as inflammaging and is central to the predisposition and develop-
ment of age-related chronic diseases, including cancers [22, 23]. Further, there are
dynamic inter-individual variability in the degree of inflammaging due to genetics,
environmental interactions, epigenetic factors (e.g., methylation), etc. to consider in
personalized precision medicine.

Alpert et al. [22, 23] screened 73 immune cell subsets (phenotypes) and calcu-
lated the group level and individual level longitudinal slopes in frequency (population
abundance). To study the global attractor dynamics of these immune profiles, they
applied Principal Component Analysis (PCA) on the CyTOF data. The two main
principal components correlated with the frequencies of many immune-senescence
associated phenotypes such as such as CD28–CD8+ T-cells, naive CD4+CD8+ T-
cells, and memory B cells [22, 23]. The PCA trajectory length per individual with
respect to these immunosenescence-related cell-subsets exhibited a shorter trajec-
tory in younger patients. Immune cells in older adults converged toward steady-state
levels in a baseline-dependent manner to yield fixed-point attractors. Further, by
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applying the diffusion pseudo-time algorithm (DPT), a type of dimensionality reduc-
tion technique, the cellular frequency profiles changed along a trajectory reflecting
the patient’s immune age. In agreement with the PCA immune trajectories, the indi-
vidual slopes of older adults along the DPT trajectory were significantly positive,
as opposed to those calculated for the young adults. Key cytokine responses that
significantly changed along the trajectory were also identified in the study (Alpert
et al. 2018).

The longitudinal blood analysis by Alpert et al. [22, 23] demonstrated the IMM-
AGE score can well-predict age-related cardiovascular disease incidence by iden-
tifying a candidate gene set whose expression was significantly correlated along
the patient-derived immune profile trajectories. The cellular frequency dynamics
along the trajectory showed the downregulation of genes predominantly expressed by
naive CD8+T cells, naive CD4+T cells and B cells, whereas upregulated genes were
predominantly expressed by cytotoxic NK cells and terminally differentiated effector
memory CD8+T cells. The IMM-AGE score was shown to predict mortality in
older adults by >500-fold significance than the epigenetic clock (DNA-methylation
metric). Further, these findings suggested that like the epigenetic landscape proposed
by Waddington to describe cell fate dynamics during differentiation processes as
attractors, we can describe the cellular composition and cell fate dynamics of the
immune system as traversing an immunological attractor landscape. The immune-
profile variation (trajectory) observed may be a path through this attractor land-
scape corresponding to the processes observed in aging and aging-related diseases,
with interindividual variability in the rate of progression along the trajectory. The
trajectory trend toward a minimum (i.e., an attractor) in the landscape representing
the patient’s immune homeostasis. Populations with longevity may exhibit slower
pseudo-time progression rates along the trajectory of immune cell dynamics. The
presence of more complex attractors may be indicative of complex immune diseases
such as cancers [40, 39]. The immunological landscape may well apply to predicting
causal dynamics in response to cancer immunotherapy in patients through their
blood-derived immune variation along a principal curve (PCA trajectory) or DPT
curve. These attractor dynamics inferring approaches may pave the identification
of clinically-relevant biomarkers and targeted therapies for immune-system related
morbidities such as cancers [22, 23]. Further, they demonstrate that longitudinal,
systems-level cancer data analysis may allow a robust quantitative description of
disease prognosis and therapy response prediction.

Similarly, in another longitudinal systems analysis, the immune system variation
within individuals were studied in n= 99middle-aged healthy patients (aged 50–65),
sampled every third month over a year’s time-period to identify causal biomarkers
of cardiovascular disease risk [41]. Inter-individual variation and characterization of
extreme immune cell phenotypes along a principal component curve were measured
by fluctuations in between various immune cell populations and a diverse panel of
plasma proteins. The most variable individuals exhibited markers of poor metabolic
health suggestive of a causal link between immunologic homeostasis and health
progression. To perform the immune cell compositional frequency analysis, Laksh-
mikanth et al. [41] calculated the Aitchison’s distance matrix, based on relative
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abundances of 53 non-overlapping immune cell populations, and visualized samples
by multidimensional scaling (MDS), where each sample was positioned on its pair-
wise distance to all other samples. Then, a PCA trajectory was used to analyze the
variation (i.e., attractor dynamics) in immune cell composition.

In agreement with the previously discussed study by Alpert et al. [22, 23], the
global immune dynamics revealed a positive correlation with CD4+ and CD8+T-
cells, and a negative correlation with memory B-cell populations [41]. Using a
Bayesian variable selection method, they identified likelihood of plasma protein
markers associated with the cell population fluctuations which resulted in the infer-
ence of an immune regulatory network of 226 significant associations [41]. In
specific, a high immune cell variability was found to be associated with blood
biomarkers of poor metabolic health. The study found a positive correlation between
multiple markers of poor metabolic health, such as plasma Apo-B, Troponin T,
Triglycerides (TG), and LDL cholesterol, and a negative relationship between
immune variability over time (mean Aitchison’s distance), as well as metabolic
biomarkers such as HDL, and Apo-A1 [41]. The total white blood cell count,
red blood cell count, and neutrophil count were also positively associated with
high immune variability over time. Chemokines such as CCL18 expressed by
macrophages were further causally linked with the predisposition to coronary artery
disease in the patients.

The longitudinal study demonstrates that longitudinal analysis of patient-specific
immune system profiles can be modelled as attractor dynamics underlying networks
of causal relationships amidst the biomarkers (i.e., cells and proteins) [41]. However,
the study was limited to the assumed notion of stable attractors points representing
the immune profile trajectories/variations. The stable steady-state frequency toward
which an immune cell subset converged with age were assumed to be fixed-point
attractors, the simplest of attractors in dynamical systems. However, in principle, the
high dimensional data points of the immunological landscape can possibly converge
towards unstable, complex attractors such as strange attractors [42, 43]. Mathemat-
ical models of immune-cancer cell population growth-invasion dynamics suggest
the emergence of chaotic (strange) attractors as indicators of cancer adaptiveness,
resilience, and recurrence/relapse [44–47]. However, these computational predic-
tions of lack experimental validation. As will be discussed, Algorithmic Information
Dynamics (AID) provides a robust solution to overcome the challenge of causality
inference in network dynamics and is emerging as a powerful detection tool for
reconstructing the complex dynamics/attractors in state-space signaling networks
[48].
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7 From Statistical AI to AGI for Causation in Medicine

Machine learning (ML) algorithms are emerging as a promising statistical AI
approach for clinical data analysis. For example, liquid-biopsy based cancer detec-
tion and screening via characterization of patient-derived EVs/exosomes [49, 50]. In
another example, Chen et al. [16] combined a single-molecule localization andmulti-
plex super-resolution imaging technique calledDNA-PAINT to immunostain patient-
derived exosomes by four specific exosomal surface biomarkers: HER2, GPC-1,
EpCAM, and EGFR. Linear discriminant analysis (LDA), a type of ML classifier,
enhanced by cross-validation was used to distinguish cancer patients from healthy
individuals using exosomes extracted from patient-derived blood samples. The ML
algorithm was shown capable of profiling cancer EVs extracted from pancreatic and
breast cancer patients from those of healthy patients with a 100% accuracy [51].

More recently, Deep Learning-based spectroscopic analysis of liquid-biopsy
derived exosomes has shown > 90% sensitivity and accuracy in cancer detection
[52]. Exosomes are a subset of lipid-bound EVs found in the 300–100 nm size
range circulating in patient blood sera. Shin et al. [52] trained a residual neural
network (Resnet)-based deep learning model, with the surface-enhanced Raman
spectra (SERS) of cancer exosomes and healthy plasma cell line exosomes, which
the algorithm classified with a 95% accuracy. When the Deep Learning algorithm
was assessed on the SERS signals of 43 patients-derived exosomes, including stage
I and II lung cancer patients, the algorithm predicted lung cancer with an AUC of
0.912 for the whole cohort and stage I patients with an AUC of 0.910. These findings
strongly demonstrate that the pairing of liquid-biopsy derived cancer EVs with AI
may pave early-stage cancer detection with high sensitivity and specificity [52].

These arguments strongly warrant the need for pairing longitudinal cancer data
analysis with AI to understand cancer-immune causal networks. Further they high-
light its clinical importance in early cancer diagnosis, screening, therapeutic response
assessment, and therapy management. The longitudinal studies further demonstrate
that network science and attractor landscapes provide novel complex systems tools
to study the evolving attractor states of immune cell subsets and identify their causal
roles in cancer cell fate regulation (cybernetics). Network medicine allows the inte-
gration of multi-omics sequencing data with graph theoretic algorithms to infer
signaling relationships between cells, genes, and proteins [53, 54]. For example, tech-
nologies that combine a pooledCRISPR screenwith scRNA-seq, such as Perturb-seq,
were shown capable of identifying themolecular transcriptional networks controlling
cancer progression and steering cancer cell fate decisions [55]. ML algorithms have
widely been adopted for reconstructing complex cell communication networks such
as gene regulatory networks and protein–protein interaction networks [55]. However,
most of our currently predominant approaches in network medicine rely on correla-
tionmetrics. Correlation does not imply causation.As such, amidst all efforts fromAI
to understand cancer signaling networks as dynamical systems, Algorithmic Infor-
mation Dynamics (AID) has been demonstrated as a robust AGI (Artificial General
Intelligence) approach to longitudinal dynamic analysis to infer causal relationships
(attractor dynamics).
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8 Algorithmic Information Dynamics

To systematically move away from ‘sick’ care to health care, where the purpose is
the sustainability of health and extended quality of life (longevity), new methods
are required to discover each person’s own personalised baselines and patterns and
to produce personalised medical knowledge over time based on the individual own
history both when ill but also when normal. The application of Artificial Intelligence
to learn from longitudinal data and help build individual health profiles represents an
opportunity. Current machine learning approaches are very limited to finding simple
statistical patterns and deal poorly with causal discovery often generating spurious
correlations [56, 57]. For this reason, the application of responsible, intuitive, and
causal machine intelligence [58] is required and has been proven to find patterns
in cancer pathways [48], in genetic regulatory networks that produce proteins [48],
and in deciphering the structure of the DNA [59] where the founders of Oxford
Immune Algorithmics have made their greatest contributions. This new type of new
AI, rooted in causal models, is traceable and more explainable compared to black-
box approaches (such as deep neural networks) as more transparency is needed in
medicine for a responsible application.

Algorithmic InformationDynamics (AID) is emerging as anAI approach for infer-
ring causal information dynamics across evolving networks through perturbation
analysis in software space [48]. AID provides a framework of measures from algo-
rithmic complexity, network science, and information theory to infer the properties
and causal dynamics of complex networks. According to AID, the immune system
can be seen as an error-correcting code while cancer is treated as an information-
theoretic problem [42, 43]. The causal relationships with interactions of the evolving
networks (e.g., signaling proteins, genes,metabolic, epigenetic, etc.) can be projected
as attractor state-dynamics on an epigenetic landscape (i.e., the state space projec-
tion) or an immune landscape when considering the high- dimensional phase space
of cancer-immune dynamics [60, 42, 43]. Then, unhealthy states of the dynamical
immune system can be defined as strange attractors on the landscape/state-space,
while healthy states are considered as stable fixed-point attractors [42, 43].

AID provides a set of tools to approximate the Algorithmic (Kolmogorov)
complexity of these complex graph networks and control them via perturbation anal-
ysis in software space. Perturbation analysis can be as simple as the removal of an
edge or node from the complex network. For example, a gene regulatory network can
be represented by a set of strings or vector of arrays (a tensor) in binary (at a multi-
plicity of cutoff values). The algorithmic information content of this tensor can then
be described by classical measures such as Shannon entropy H(s) or Kolmogorov
complexity K(s). The Kolmogorov complexity, K(s), also known as K-complexity or
algorithmic complexity quantifies the shortest bits of a string or computer program
required to describe a dataset (graph network) [61]. However, K(s) is a more robust
tool than Shannon entropy to measure the complex dynamics of networks and distin-
guish them from randomness (i.e., low complexity). Although Shannon entropy can
quantify the amount of information in a complex network, it fails to reconcile the
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causal relationshipswithin thenetwork.Furthermore,K(s)doesnotdependonachoice
of probability distribution like Shannon entropy does. Therefore, it is more robust
than Shannon entropy in measuring the complexity of graph networks, such as the
longitudinal cancer-immune networks reconstructed from blood-analysis. The graph
(Shannon) entropy is to correlation what the Kolmogorov complexity is to causation.
Unlike graph entropy, graph Kolmogorov complexity is a robust measure of causal
information dynamics in complex networks [48]. The algorithmic complexity of a
complex network distinguishes a process as a cause or randomness [48].

Longitudinal cancer data analysis by AI and algorithms may pave robust clin-
ical approaches for the early detection, prognostic screening, therapeutic response
prediction, and therapy management of complex diseases like cancer in precision
medicine. The dynamics of blood-immune cell composition and cell frequencies
in response to therapies can be inferred as a metric of immunological health via
longitudinal patient-blood analysis. Longitudinal variability/fluctuations in immune
cell counts and plasma proteins were used to identify co-regulated immune system
components within the patients. The longitudinal analysis of their gene expression
patterns and biomarker fluctuations over time allow us to study the causal informa-
tion dynamics (i.e., attractor inference) in evolving disease-immune networks. AID
is an AI toolkit for screening complex attractor dynamics in complex processes such
as cancer cell fate trajectories (on the Waddington-immunological landscape). The
complexity measures provided by AID allow us to detect the complex attractor states
steering cellular decision-making during disease progression and therapy response
via perturbation analysis in software space. The complexity of the attractor(s) corre-
sponds to the irregularity of the system’s behaviors and dynamics. Estimating the
Kolmogorov-complexity (K(G)) of the complex evolving graph networks steering
cancer cell fate decision-making provides a robust screening tool to identify the
critical signals (epigenetic regulations, genes, proteins, etc.) regulating the complex
attractor dynamics and hence, governing the adaptive behaviors in cancer ecosys-
tems. As such, they may pave the cell fate reprogramming of complex adaptive
diseases like cancers.

9 Conclusion

The key for better and personalised understanding of the role of the immune system
over time, that is in health and disease. The routine collection of longitudinal data
that allows changes in the immune system to be tracked over time and be correlated
with internal and external factors, including symptoms and sign of disease is required
to move towards causal analysis and model-driven precision medicine. The delivery
of this promise requires three pillars: (1) accessibility, the democratisation to access
to blood testing, so that they can be performed regularly, conveniently, accurately,
and affordable; (2) the collection of all relevant physiological and clinical data,
such clinical symptoms, and treatments; and (3) the ability to collate, integrate and
analyse these data using state-of-the-art responsible model-driven AI to generate
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novel insights. If performed in an ethical and sustainable manner, such an approach
has the potential to propel our ability to reduce disease and suffering from incremental
progress towards vast transformation.
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